دورية أكاديمية

Indium(III) complexes with lapachol: cytotoxic effects against human breast tumor cells and interactions with DNA.

التفاصيل البيبلوغرافية
العنوان: Indium(III) complexes with lapachol: cytotoxic effects against human breast tumor cells and interactions with DNA.
المؤلفون: de Carvalho AB; Departamento de Química, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, Minas Gerais, Brazil., Souza AMS; Departamento de Química, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, Minas Gerais, Brazil., Bento LP; Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, Minas Gerais, Brazil., de Oliveira Silva M; Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, Minas Gerais, Brazil., Souza-Fagundes EM; Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, Minas Gerais, Brazil., Diniz R; Departamento de Química, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, Minas Gerais, Brazil., Beraldo H; Departamento de Química, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, Minas Gerais, Brazil. hberaldo@ufmg.br.
المصدر: Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry [J Biol Inorg Chem] 2024 Jul 16. Date of Electronic Publication: 2024 Jul 16.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9616326 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1327 (Electronic) Linking ISSN: 09498257 NLM ISO Abbreviation: J Biol Inorg Chem Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer, c1996-
مستخلص: Lapachol (2-hydroxy-3-(3-methylbut-2-en-1-yl)naphthalene-1,4-dione) is a 1,4-naphthoquinone-derived natural product that presents numerous bioactivities and was shown to have cytotoxic effects against several human tumor cells. Indium(III) complexes with a variety of ligands also exhibit antineoplastic activity. Indium(III) complexes [In(lap)Cl 2 ].4H 2 O (1), [In(lap) 2 Cl(Et 3 N)] (2), [In(lap) 3 ]·2H 2 O (3) [In(lap)(bipy)Cl 2 ] bipy = 2,2'-bipyridine (4) and [In(lap)(phen)Cl 2 ] phen = 1,10-phenanthroline (5) were obtained with 2-hydroxy-3-(3-methylbut-2-en-1-yl)naphthalene-1,4-dione (lapachol). Crystal structure determinations for (4) and (5) revealed that the indium(III) center is coordinated to two O atoms from lapachol, two N atoms from 1,10-phenanthroline or 2,2'-bipyridine, and two chloride anions, in a distorted octahedral geometry. Although both complexes (4) and (5) interacted with CT-DNA in vitro by an intercalative mode, only 5 exhibited cytotoxicity against MCF-7 and MDA-MB breast tumor cells. 1,10-phenanthroline and complex (5) presented cytotoxic effects against MCF-7 and MDA-MB cells, with complex (5) being threefold more active than 1,10-phenanthroline on MCF-7 cells. In addition, complex (5) significantly reduced the formation of MDA-MB-231 colonies in a clonogenicity assay. The foregoing results suggest that further studies on the cytotoxic effects and cellular targets of complex (5) are of utmost relevance.
(© 2024. The Author(s), under exclusive licence to Society for Biological Inorganic Chemistry (SBIC).)
References: Beraldo H (2020) Pharmacological applications of non-radioactive indium(III): A field yet to be explored. Coord Chem Rev. https://doi.org/10.1016/j.ccr.2020.213375. (PMID: 10.1016/j.ccr.2020.213375)
Almeida AA, Perdigão GMC, Rodrigues LE, da Silva JG, Souza-Fagundes EM, Takahashi JA, Rocha WR, Beraldo H (2016) Cytotoxic and antimicrobial effects of indium(III) complexes with 2-acetylpyridine-derived thiosemicarbazones. Dalton Trans 46:918–932. https://doi.org/10.1039/C6DT03657K. (PMID: 10.1039/C6DT03657K)
Oliveira AA, Perdigão GMC, da Silva JG, Souza-Fagundes EM, Beraldo H (2017) Indium(III) complexes with 2-acetylpyridine-derived thiosemicarbazones exhibit cytotoxic activity against human leukemia and solid tumor cell lines. Polyhedron 135:72–78. https://doi.org/10.1016/j.poly.2017.06.045. (PMID: 10.1016/j.poly.2017.06.045)
Aguirre AR, Parrilha GL, Diniz R, Ribeiro BC, Dos Santos RG, Beraldo H (2019) Cytotoxic effects of índium(III) complexes with 2-acetylpyridine- N(4)-ortho-fluorophenylthiosemicarbazone and their radioactive 114m In analogues against human glioma cells. Polyhedron 164:219–227. https://doi.org/10.1016/j.poly.2019.02.055. (PMID: 10.1016/j.poly.2019.02.055)
Almeida AA, Franco LL, dos Santos RG, Perdigão GMC, da Silva JG, Souza-Fagundes EM, Beraldo H (2017) Neutron activation of In(III) complexes with thiosemicarbazones leads to the production of potential radiopharmaceutical for the treatment of breast cancer. New J Chem 41:9041–9050. https://doi.org/10.1039/C7NJ01547J. (PMID: 10.1039/C7NJ01547J)
Epifano F, Genovese S, Fiorito S, Mathieu V, Kiss R (2014) Lapachol and its congeners as anticancer agents: a review. Phytochem Rev 13:37–49. https://doi.org/10.1007/s11101-013-9289-1. (PMID: 10.1007/s11101-013-9289-1)
Xu H, Chen Q, Wang H, Xu P, Yuan R, Li X, Bai L, Xue M (2016) Inhibitory effects of lapachol on rat C6 glioma in vitro and in vivo by targeting DNA topoisomerase I and topoisomerase II. J Exp Clin Cancer Res 35:178. https://doi.org/10.1186/s13046-016-0455-3. (PMID: 10.1186/s13046-016-0455-3278523195112657)
Miranda SEM, Lemos JA, Fernandes RS, Silva JO, Ottoni FM, Townsend DM, Rubello D, Alves RJ, Cassali GD, Ferreira LAM, de Barros ALB (2021) Enhanced antitumor efficacy of lapachol-loaded nanoemulsion in breast cancer tumor model. Biomed Pharmacother 133:110936. https://doi.org/10.1016/j.biopha.2020.110936. (PMID: 10.1016/j.biopha.2020.110936)
Parrilha GL, Vieira RP, Campos PP, Silva GDF, Duarte LP, Andrade SP, Beraldo H (2012) Coordination of lapachol to bismuth(III) improves its anti-inflammatory and anti-angiogenic activities. Biometals 25:55–62. https://doi.org/10.1007/s10534-011-9481-y. (PMID: 10.1007/s10534-011-9481-y21822673)
Tabrizi L, Talaie F, Chiniforoshan H (2016) Copper(II), Cobalt(II) and Nickel(II) Complexes of Lapachol: Synthesis, DNA interaction and Cytotoxicity. J Biomol Struct Dyn 15:1–46. https://doi.org/10.1080/07391102.2016.1254118. (PMID: 10.1080/07391102.2016.1254118)
Oliveira KM, Honorato J, Demidoff FC, Schultz MS, Netto CD, Cominetti MR, Correa RS, Batista AA (2021) Lapachol in the design of a new ruthenium(ii)-diphosphine complex as a promising anticancer metallodrug. J Inorg Biochem 214:111289. https://doi.org/10.1016/j.jinorgbio.2020.111289. (PMID: 10.1016/j.jinorgbio.2020.11128933137682)
Ünver H, Berber B, Kanat B, Arafat M, Koparal AT, Doluca O (2022) DNA binding effects of 2,2’-bipyridine and 1,10-phenanthroline ligands synthesized with benzimidazole copper(II) complexes: Crystal structure, molecular docking, DNA binding and anti-cancer studies. Polyhedron 221:1115834. (PMID: 10.1016/j.poly.2022.115834)
Fei B, Li W, Xu W, Li Y, Long J, Liu Q, Shao K, Su Z, Sun W (2013) Two novel copper complexes of 2,2’-bipyridine: Evaluation of the DNA binding and cytotoxic activity. J Photochem Photobiol, B 125:32–41. https://doi.org/10.1016/j.jphotobiol.2013.04.011. (PMID: 10.1016/j.jphotobiol.2013.04.01123727617)
Loss M, Gerber C, Corona F, Hollenger J, Singer H (2015) Accelerated isotope fine structure calculation using pruned transition trees. Anal Chem 87(11):5738–5744. (PMID: 10.1021/acs.analchem.5b00941)
CrysAlisPro. Rigaku Oxford Diffraction. CrysAlisPro. Rigaku Corporation, Tokyo, Japan. 2015.
Sheldrick G (2015) Crystal structure refinement with SHELXL. Acta Crystallogr A 71:3–8. https://doi.org/10.1107/S2053229614024218. (PMID: 10.1107/S2053229614024218)
Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) A complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341. https://doi.org/10.1107/S0021889808042726. (PMID: 10.1107/S0021889808042726)
Farrujia LJ (1997) ORTEP-3 for windows – a version of ortep iii with a graphical user interface (gui). J Appl Crystallogr 30:565. https://doi.org/10.1107/S0021889897003117. (PMID: 10.1107/S0021889897003117)
POV-Ray for Windows- Version 3.7.0. msvc10.win64. Persistence of Vision, Williamstown, Victoria, Australia.
Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276. https://doi.org/10.1107/S0021889811038970. (PMID: 10.1107/S0021889811038970)
Blatov VA, Shevchenko AP, Proserpio DM (2014) Applied topological analysis of crystal structures with the program package topospro. Cryst Growth Des 14:3576–3586. https://doi.org/10.1021/cg500498k. (PMID: 10.1021/cg500498k)
Macrae CF, Sovago I, Cottrel SJ, Galek PTA, McCabe P, Pidock E, Platings M, Shields GP, Stevens JS, Towler M, Wood PA (2020) Mercury 4.0: from visualization to analysis, design and prediction. J Appl Crystallogr 53:226–235. https://doi.org/10.1107/S1600576719014092. (PMID: 10.1107/S1600576719014092320474136998782)
Ramos JP, Abdel-Salam MAL, Nobre DAB, Glanzmann N, de Souza CP, Leite EA, de Abreu Teles PP, Barbosa AS, Barcelos LS, Dos Reis DC, Cassali GD, de Lima ME, de Castro QJT, Grabe-Guimarães A, da Silva AD, de Souza-Fagundes EM (2022) Acute toxicity and antitumor potential of 1,3,4- trisubstituted-1,2,3-triazol dhmtAc-loaded liposomes on a triple-negative breast cancer model. Arch Pharm 355:220004. https://doi.org/10.1002/ardp.202200004. (PMID: 10.1002/ardp.202200004)
Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vivo. Nat Protoc 1:2315–2319. (PMID: 10.1038/nprot.2006.33917406473)
Larsen IK, Andersen LA, Pedersen BF (1992) Structures of two crystalline modifications of lapachol, Acta Crystallographica Section C, C48. https://doi.org/10.1107/S0108270192003378.
O’ Keeffe M, Peskov MA, Ramsden SJ, Yaghi OM, (2008) The reticular chemistry structure resource (rcsr) database of, and symbols for, crystal nets. Acc Chem Res 41:1782–1789. https://doi.org/10.1021/ar800124u. (PMID: 10.1021/ar800124u18834152)
Theodossiou TA, Ali M, Grigalavicius M, Grallert B, Dillard P, Schink KO, Olsen CE, Wälchli S, Inderberg EM, Kubin A, Peng Q, Berg Q (2019) Simultaneous defeat of MCF-7 and MDA-MB-231 resistances by a hypericin PDT-tamoxifen hybrid therapy. NPJ Breast Cancer 13:5–13. https://doi.org/10.1038/s41523-019-0108-8. (PMID: 10.1038/s41523-019-0108-8)
Hu J, Han J, Li H, Zhang X, Liu LL, Chen F, Zeng B (2018) Human embryonic kidney 293 cells: a vehicle for biopharmaceutical manufacturing. Struct Biol Electrophysiol 205:1–8. https://doi.org/10.1159/000485501. (PMID: 10.1159/000485501)
Lica JJ, Wieczór M, Grabe GJ, Heldt M, Jancz M, Misiak M, Gucwa K, Brankiewicz W, Maciejewska N, Stupak A, Bagiński M, Rolka K, Hellman A, Składanowski A (2021) Effective drug concentration and selectivity depends on fraction of primitive cells. Int J Mol Sci 22(9):4931. https://doi.org/10.3390/ijms22094931. (PMID: 10.3390/ijms22094931340664918125035)
Fiebig HH, Maier A, Burguer AM (2004) Clonogenic assay with established human tumour xenografts: correlation of in vitro to in vivo activity as a basis for anticancer drug Discovery. Eur J Cancer 40:802–820. (PMID: 10.1016/j.ejca.2004.01.00915120036)
Gomes NP, Frederick B, Jacobsen JR, Chapnick D, Su TT (2023) A high throughput screen with a clonogenic endpoint to identify radiation modulators of cancer. Radiat Res 199:132–147. https://doi.org/10.1667/RADE-22-00086.1. (PMID: 10.1667/RADE-22-00086.13658394810000021)
Li Y, Zhang H, Merkher Y (2022) Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol. https://doi.org/10.1186/s13045-022-01341-0. (PMID: 10.1186/s13045-022-01341-0365819549798557)
Da Silva JG, RecioDespaigne AA, Louro SRW, Bandeira CC, Souza-Fagundes EM, Beraldo H (2013) Cytotoxic activity, albumin and DNA binding of new copper(II) complexes with chalcone-derived thiosemicarbazones. Eur J Med Chem 65:415–426. https://doi.org/10.1016/j.ejmech.2013.04.036. (PMID: 10.1016/j.ejmech.2013.04.03623747809)
Oliveira KM, Corrêa RS, Barbosa MIF, Ellena J, Cominetti MR, Batista AA (2017) Ruthenium(II)/triphenylphosphine complexes: An effective way to improve the citotoxicity of lapachol. Polyhedron 130:108–114. https://doi.org/10.1016/j.poly.2017.04.005. (PMID: 10.1016/j.poly.2017.04.005)
Mari C, Pierroz V, Rubbiani R, Patra M, Hess J, Spingler B, Oehninger L, Schur J, Ott I, Salassa L, Ferrari S, Gasser G (2014) DNA intercalating ru ii polypyridil complexes as effective photosensitizers in photodynamic therapy. Chem Eur J 44:14421–14436. https://doi.org/10.1002/chem.201402796. (PMID: 10.1002/chem.201402796)
معلومات مُعتمدة: EMSF: APQ-00428-21 HB APQ 01588-21 Fundação de Amparo à Pesquisa do Estado de Minas Gerais; CNPq (EMSF: 406048/2018-5) HB : 421902/2016-7 3 Conselho Nacional de Desenvolvimento Científico e Tecnológico
فهرسة مساهمة: Keywords: Breast tumor cells; Cytotoxic activity; Indium(III) complexes; Lapachol
تواريخ الأحداث: Date Created: 20240715 Latest Revision: 20240715
رمز التحديث: 20240716
DOI: 10.1007/s00775-024-02062-0
PMID: 39009790
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1327
DOI:10.1007/s00775-024-02062-0