دورية أكاديمية

BACH2 regulates diversification of regulatory and proinflammatory chromatin states in T H 17 cells.

التفاصيل البيبلوغرافية
العنوان: BACH2 regulates diversification of regulatory and proinflammatory chromatin states in T H 17 cells.
المؤلفون: Thakore PI; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Genentech, South San Francisco, CA, USA., Schnell A; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.; Whitehead Institute for Biomedical Research, Cambridge, MA, USA., Huang L; The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.; Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA., Zhao M; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Hou Y; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA., Christian E; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Zaghouani S; The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA., Wang C; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.; Department of Immunology, University of Toronto and Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada., Singh V; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Singaraju A; The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA., Krishnan RK; The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA., Kozoriz D; The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA., Ma S; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA., Sankar V; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Notarbartolo S; Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland.; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Infectious Diseases Unit, Milan, Italy., Buenrostro JD; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Sallusto F; Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland.; Institute of Microbiology, ETH Zurich, Zurich, Switzerland., Patsopoulos NA; Systems Biology and Computer Science Program, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham & Women's Hospital, Boston, MA, USA.; Division of Genetics, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.; Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Rozenblatt-Rosen O; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Genentech, South San Francisco, CA, USA., Kuchroo VK; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA. vkuchroo@bwh.harvard.edu.; The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. vkuchroo@bwh.harvard.edu., Regev A; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA. aviv.regev.sc@gmail.com.; Genentech, South San Francisco, CA, USA. aviv.regev.sc@gmail.com.
المصدر: Nature immunology [Nat Immunol] 2024 Jul 15. Date of Electronic Publication: 2024 Jul 15.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature America Inc Country of Publication: United States NLM ID: 100941354 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1529-2916 (Electronic) Linking ISSN: 15292908 NLM ISO Abbreviation: Nat Immunol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature America Inc. c2000-
مستخلص: Interleukin-17 (IL-17)-producing helper T (T H 17) cells are heterogenous and consist of nonpathogenic T H 17 (npT H 17) cells that contribute to tissue homeostasis and pathogenic T H 17 (pT H 17) cells that mediate tissue inflammation. Here, we characterize regulatory pathways underlying T H 17 heterogeneity and discover substantial differences in the chromatin landscape of npT H 17 and pT H 17 cells both in vitro and in vivo. Compared to other CD4 + T cell subsets, npT H 17 cells share accessible chromatin configurations with regulatory T cells, whereas pT H 17 cells exhibit features of both npT H 17 cells and type 1 helper T (T H 1) cells. Integrating single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) and single-cell RNA sequencing (scRNA-seq), we infer self-reinforcing and mutually exclusive regulatory networks controlling different cell states and predicted transcription factors regulating T H 17 cell pathogenicity. We validate that BACH2 promotes immunomodulatory npT H 17 programs and restrains proinflammatory T H 1-like programs in T H 17 cells in vitro and in vivo. Furthermore, human genetics implicate BACH2 in multiple sclerosis. Overall, our work identifies regulators of T H 17 heterogeneity as potential targets to mitigate autoimmunity.
(© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.)
References: Schnell, A., Littman, D. R. & Kuchroo, V. K. T H 17 cell heterogeneity and its role in tissue inflammation. Nat. Immunol. 24, 19–29 (2023). (PMID: 365968961079547510.1038/s41590-022-01387-9)
Schnell, A. et al. Targeting PGLYRP1 promotes antitumor immunity while inhibiting autoimmune neuroinflammation. Nat. Immunol. 24, 1908–1920 (2023). (PMID: 378283791086403610.1038/s41590-023-01645-4)
Littman, D. R. & Rudensky, A. Y. T H 17 and regulatory T cells in mediating and restraining inflammation. Cell 140, 845–858 (2010). (PMID: 2030387510.1016/j.cell.2010.02.021)
Bettelli, E., Oukka, M. & Kuchroo, V. K. T H -17 cells in the circle of immunity and autoimmunity. Nat. Immunol. 8, 345–350 (2007). (PMID: 1737509610.1038/ni0407-345)
Blaschitz, C. & Raffatellu, M. T H 17 cytokines and the gut mucosal barrier. J. Clin. Immunol. 30, 196–203 (2010). (PMID: 20127275284287510.1007/s10875-010-9368-7)
Stockinger, B. & Omenetti, S. The dichotomous nature of T helper 17 cells. Nat. Rev. Immunol. 17, 535–544 (2017). (PMID: 2855567310.1038/nri.2017.50)
Lee, Y. et al. Induction and molecular signature of pathogenic T H 17 cells. Nat. Immunol. 13, 991–999 (2012). (PMID: 22961052345959410.1038/ni.2416)
Ghoreschi, K. et al. Generation of pathogenic T H 17 cells in the absence of TGF-β signalling. Nature 467, 967–971 (2010). (PMID: 20962846310806610.1038/nature09447)
Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of T H 17 cell pathogenicity. Cell 163, 1400–1412 (2015). (PMID: 26607794467182410.1016/j.cell.2015.11.009)
Wagner, A. et al. Metabolic modeling of single T H 17 cells reveals regulators of autoimmunity. Cell 184, 4168–4185 (2021). (PMID: 34216539862195010.1016/j.cell.2021.05.045)
Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12, 255–263 (2011). (PMID: 21278737304023510.1038/ni.1993)
Lee, Y. K. et al. Late developmental plasticity in the T helper 17 lineage. Immunity 30, 92–107 (2009). (PMID: 19119024360732010.1016/j.immuni.2008.11.005)
Schnell, A. et al. Stem-like intestinal T H 17 cells give rise to pathogenic effector T cells during autoimmunity. Cell 184, 6281–6298 (2021). (PMID: 34875227890067610.1016/j.cell.2021.11.018)
Pawlak, M. et al. Induction of a colitogenic phenotype in T H 1-like cells depends on interleukin-23 receptor signaling. Immunity 55, 1663–1679 (2022).
Harbour, S. N., Maynard, C. L., Zindl, C. L., Schoeb, T. R. & Weaver, C. T. T H 17 cells give rise to T H 1 cells that are required for the pathogenesis of colitis. Proc. Natl Acad. Sci. USA 112, 7061–7066 (2015). (PMID: 26038559446048610.1073/pnas.1415675112)
Yosef, N. et al. Dynamic regulatory network controlling T H 17 cell differentiation. Nature 496, 461–468 (2013). (PMID: 23467089363786410.1038/nature11981)
Wang, C. et al. CD5L/AIM regulates lipid biosynthesis and restrains T H 17 cell pathogenicity. Cell 163, 1413–1427 (2015). (PMID: 26607793467182010.1016/j.cell.2015.10.068)
Zheng, S., Hedl, M. & Abraham, C. Twist1 and Twist2 contribute to cytokine downregulation following chronic NOD2 stimulation of human macrophages through the coordinated regulation of transcriptional repressors and activators. J. Immunol. 195, 217–226 (2015). (PMID: 2601927310.4049/jimmunol.1402808)
Xiao, S. et al. Checkpoint receptor TIGIT expressed on Tim-1 + B cells regulates tissue inflammation. Cell Rep. 32, 107892 (2020). (PMID: 32668241749622010.1016/j.celrep.2020.107892)
Kim, S. V. et al. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science 340, 1456–1459 (2013). (PMID: 23661644376226210.1126/science.1237013)
Tortola, L. et al. High-dimensional T helper cell profiling reveals a broad diversity of stably committed effector states and uncovers interlineage relationships. Immunity 53, 597–613 (2020). (PMID: 3273584610.1016/j.immuni.2020.07.001)
Meyer Zu Horste, G. et al. RBPJ controls development of pathogenic T H 17 cells by regulating IL-23 receptor expression. Cell Rep. 16, 392–404 (2016). (PMID: 27346359498426110.1016/j.celrep.2016.05.088)
Hiltensperger, M. et al. Skin and gut imprinted helper T cell subsets exhibit distinct functional phenotypes in central nervous system autoimmunity. Nat. Immunol. 22, 880–892 (2021). (PMID: 34099917761109710.1038/s41590-021-00948-8)
Tantin, D. Oct transcription factors in development and stem cells: insights and mechanisms. Development 140, 2857–2866 (2013). (PMID: 23821033369927710.1242/dev.095927)
Ciofani, M. et al. A validated regulatory network for T H 17 cell specification. Cell 151, 289–303 (2012). (PMID: 23021777350348710.1016/j.cell.2012.09.016)
Carr, T. M., Wheaton, J. D., Houtz, G. M. & Ciofani, M. JunB promotes T H 17 cell identity and restrains alternative CD4 + T-cell programs during inflammation. Nat. Commun. 8, 301 (2017). (PMID: 28824171556350710.1038/s41467-017-00380-3)
Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector T H 17 and regulatory T cells. Nature 441, 235–238 (2006). (PMID: 1664883810.1038/nature04753)
Bruder, D. et al. Neuropilin-1: a surface marker of regulatory T cells. Eur. J. Immunol. 34, 623–630 (2004). (PMID: 1499159110.1002/eji.200324799)
Murai, M. et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat. Immunol. 10, 1178–1184 (2009). (PMID: 19783988289817910.1038/ni.1791)
Fragale, A. et al. IFN regulatory factor-1 negatively regulates CD4 + CD25 + regulatory T cell differentiation by repressing Foxp3 expression. J. Immunol. 181, 1673–1682 (2008). (PMID: 1864130310.4049/jimmunol.181.3.1673)
Hu, X. & Ivashkiv, L. B. Cross-regulation of signaling pathways by interferon-γ: implications for immune responses and autoimmune diseases. Immunity 31, 539–550 (2009). (PMID: 19833085277422610.1016/j.immuni.2009.09.002)
Trinchieri, G., Pflanz, S. & Kastelein, R. A. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 19, 641–644 (2003). (PMID: 1461485110.1016/S1074-7613(03)00296-6)
Wei, L. et al. Discrete roles of STAT4 and STAT6 transcription factors in tuning epigenetic modifications and transcription during T helper cell differentiation. Immunity 32, 840–851 (2010). (PMID: 20620946290465110.1016/j.immuni.2010.06.003)
Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021). (PMID: 33633365801221010.1038/s41588-021-00790-6)
Bravo Gonzalez-Blas, C. et al. cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data. Nat. Methods 16, 397–400 (2019). (PMID: 3096262310.1038/s41592-019-0367-1)
Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017). (PMID: 28825706562314610.1038/nmeth.4401)
Moisan, J., Grenningloh, R., Bettelli, E., Oukka, M. & Ho, I. C. ETS-1 is a negative regulator of T H 17 differentiation. J. Exp. Med. 204, 2825–2835 (2007). (PMID: 17967903211851810.1084/jem.20070994)
Gilchrist, M. et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441, 173–178 (2006). (PMID: 1668816810.1038/nature04768)
De Nardo, D. et al. High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat. Immunol. 15, 152–160 (2014). (PMID: 2431704010.1038/ni.2784)
Zhang, H. et al. An IL-27-driven transcriptional network identifies regulators of IL-10 expression across T helper cell subsets. Cell Rep. 33, 108433 (2020). (PMID: 33238123777105210.1016/j.celrep.2020.108433)
Filen, S. et al. Activating transcription factor 3 is a positive regulator of human IFNγ gene expression. J. Immunol. 184, 4990–4999 (2010). (PMID: 2030482210.4049/jimmunol.0903106)
Hudson, W. H. et al. Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1 + stem-like CD8 + T cells during chronic infection. Immunity 51, 1043–1058 (2019). (PMID: 31810882692057110.1016/j.immuni.2019.11.002)
Yao, C. et al. BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8 + T cells. Nat. Immunol. 22, 370–380 (2021).
Bettelli, E. et al. Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J. Exp. Med. 197, 1073–1081 (2003). (PMID: 12732654219396710.1084/jem.20021603)
Schnell, A. Stem-like T cells in cancer and autoimmunity. Immunol. Rev. https://doi.org/10.1111/imr.13356 (2024).
Roychoudhuri, R. et al. BACH2 represses effector programs to stabilize T reg -mediated immune homeostasis. Nature 498, 506–510 (2013). (PMID: 23728300371073710.1038/nature12199)
Igarashi, K., Kurosaki, T. & Roychoudhuri, R. BACH transcription factors in innate and adaptive immunity. Nat. Rev. Immunol. 17, 437–450 (2017). (PMID: 2846170210.1038/nri.2017.26)
Grant, F. M. et al. BACH2 drives quiescence and maintenance of resting T reg cells to promote homeostasis and cancer immunosuppression. J. Exp. Med. 217, e20190711 (2020).
Mouri, K. et al. Prioritization of autoimmune disease-associated genetic variants that perturb regulatory element activity in T cells. Nat. Genet. 54, 603–612 (2022). (PMID: 35513721979377810.1038/s41588-022-01056-5)
McAllister, K. et al. Identification of BACH2 and RAD51B as rheumatoid arthritis susceptibility loci in a meta-analysis of genome-wide data. Arthritis Rheum. 65, 3058–3062 (2013). (PMID: 24022229403458310.1002/art.38183)
Perga, S. et al. Anti-inflammatory genes associated with multiple sclerosis: a gene expression study. J. Neuroimmunol. 279, 75–78 (2015). (PMID: 2567000410.1016/j.jneuroim.2015.01.004)
Yang, L., Chen, S., Zhao, Q., Sun, Y. & Nie, H. The critical role of BACH2 in shaping the balance between CD4 + T cell subsets in immune-mediated diseases. Mediators Inflamm. 2019, 2609737 (2019). (PMID: 32082072701221510.1155/2019/2609737)
International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365, eaav7188 (2019).
Guo, M. et al. Dissection of multiple sclerosis genetics identifies B and CD4 T cells as driver cell subsets. Genome Biol. 23, 127 (2022). (PMID: 35672799917534510.1186/s13059-022-02694-y)
Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384 (2016). (PMID: 27863249512389710.1016/j.cell.2016.09.037)
Schmiedel, B. J. et al. Impact of genetic polymorphisms on human immune cell gene expression. Cell 175, 1701–1715 (2018). (PMID: 30449622628965410.1016/j.cell.2018.10.022)
Lee, Y. & Kuchroo, V. Defining the functional states of T H 17 cells. F1000Res 4, 132 (2015). (PMID: 27006754479795810.12688/f1000research.6116.1)
Kim, E. H. et al. BACH2 regulates homeostasis of Foxp3 + regulatory T cells and protects against fatal lung disease in mice. J. Immunol. 192, 985–995 (2014). (PMID: 2436703010.4049/jimmunol.1302378)
Roychoudhuri, R. et al. BACH2 regulates CD8 + T cell differentiation by controlling access of AP-1 factors to enhancers. Nat. Immunol. 17, 851–860 (2016). (PMID: 27158840491880110.1038/ni.3441)
Herndler-Brandstetter, D. et al. KLRG1 + effector CD8 + T cells lose KLRG1, differentiate into all memory T cell lineages, and convey enhanced protective immunity. Immunity 48, 716–729 (2018). (PMID: 29625895646553810.1016/j.immuni.2018.03.015)
Karmaus, P. W. F. et al. Metabolic heterogeneity underlies reciprocal fates of T H 17 cell stemness and plasticity. Nature 565, 101–105 (2019). (PMID: 3056829910.1038/s41586-018-0806-7)
Afzali, B. et al. BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency. Nat. Immunol. 18, 813–823 (2017). (PMID: 28530713559342610.1038/ni.3753)
Vahedi, G. et al. Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520, 558–562 (2015). (PMID: 25686607440945010.1038/nature14154)
Aschenbrenner, D. et al. An immunoregulatory and tissue-residency program modulated by c-MAF in human T H 17 cells. Nat. Immunol. 19, 1126–1136 (2018). (PMID: 30201991640256010.1038/s41590-018-0200-5)
Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014). (PMID: 25300484426766910.1093/nar/gku936)
Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193–1203 (2016). (PMID: 27526324504284410.1038/ng.3646)
Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014). (PMID: 2438514710.1038/nprot.2014.006)
Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1 CD8 + tumor-infiltrating T cells. Immunity 50, 181–194 (2019). (PMID: 30635236633611310.1016/j.immuni.2018.11.014)
Singer, M. et al. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell 166, 1500–1511 (2016). (PMID: 27610572501912510.1016/j.cell.2016.08.052)
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). (PMID: 22388286332238110.1038/nmeth.1923)
Zhang, Y. et al. Model-based analysis of ChIP–seq (MACS). Genome Biol. 9, R137 (2008). (PMID: 18798982259271510.1186/gb-2008-9-9-r137)
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). (PMID: 20110278283282410.1093/bioinformatics/btq033)
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 25516281430204910.1186/s13059-014-0550-8)
McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010). (PMID: 20436461484023410.1038/nbt.1630)
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013). (PMID: 23618408405384410.1186/gb-2013-14-4-r36)
Li, B. et al. Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq. Nat. Methods 17, 793–798 (2020). (PMID: 32719530743781710.1038/s41592-020-0905-x)
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019). (PMID: 31178118668739810.1016/j.cell.2019.05.031)
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). (PMID: 1991030810.1093/bioinformatics/btp616)
McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012). (PMID: 22287627337888210.1093/nar/gks042)
DiSpirito, J. R. et al. Molecular diversification of regulatory T cells in nonlymphoid tissues. Sci. Immunol. 3, eaat5861 (2018).
Murtagh, F. & Legendre, P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J. Classification 31, 274–295 (2014). (PMID: 10.1007/s00357-014-9161-z)
Schnell, A., Thakore, P., Notarbartolo, S. & Sallusto, F. Chromatin-based mechanisms of diversification of regulatory and pro-inflammatory states reveal a role for BACH2 in T H 17-based autoimmunity. Zenodo https://zenodo.org/records/11186874 (2024).
معلومات مُعتمدة: R01NS045937 U.S. Department of Health & Human Services | National Institutes of Health (NIH); R01NS30843 U.S. Department of Health & Human Services | National Institutes of Health (NIH); R01AI144166 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
تواريخ الأحداث: Date Created: 20240715 Latest Revision: 20240716
رمز التحديث: 20240717
DOI: 10.1038/s41590-024-01901-1
PMID: 39009838
قاعدة البيانات: MEDLINE
الوصف
تدمد:1529-2916
DOI:10.1038/s41590-024-01901-1