دورية أكاديمية

Molecular and Pathobiology of Canine Mammary Tumour: Defining a Translational Model for Human Breast Cancer.

التفاصيل البيبلوغرافية
العنوان: Molecular and Pathobiology of Canine Mammary Tumour: Defining a Translational Model for Human Breast Cancer.
المؤلفون: Oliveira-Lopes AF; Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil., Götze MM; Graduate Studies Program in Biotechnology, University of Vale do Taquari-Univates, Lajeado, Brazil., Lopes-Neto BE; School of Veterinary Medicine, Ceará State University, Fortaleza, Brazil., Guerreiro DD; Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil., Bustamante-Filho IC; Graduate Studies Program in Biotechnology, University of Vale do Taquari-Univates, Lajeado, Brazil., Moura AA; Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil.
المصدر: Veterinary and comparative oncology [Vet Comp Oncol] 2024 Sep; Vol. 22 (3), pp. 340-358. Date of Electronic Publication: 2024 Jul 16.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Blackwell Country of Publication: England NLM ID: 101185242 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5829 (Electronic) Linking ISSN: 14765810 NLM ISO Abbreviation: Vet Comp Oncol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Blackwell, [2003]-
مواضيع طبية MeSH: Mammary Neoplasms, Animal*/pathology , Mammary Neoplasms, Animal*/genetics , Dog Diseases*/pathology , Dog Diseases*/genetics , Disease Models, Animal*, Dogs ; Animals ; Female ; Humans ; Breast Neoplasms/veterinary ; Breast Neoplasms/pathology ; Breast Neoplasms/genetics ; Translational Research, Biomedical
مستخلص: Canine mammary tumours (CMT) have histological, clinicopathological and molecular resemblances to human breast cancer (HBC), positioning them as viable models for studying the human disease. CMT initiation and progression occur spontaneously in immune-competent animals, which challenge the suggested limitations of genetically modified mice, also enabling the evaluation of immunotherapies in canine patients. Dogs have shorter life expectancy compared to humans, and cancer advances more rapidly in this species. This makes it possible to perform studies about the clinical efficacy of new therapeutic modalities in a much shorter time than in human patients. The identification of biomarkers for tumour subtypes, progression and treatment response paves the way for the development of novel therapeutic and diagnostic approaches. This review addresses the similarities between CMT and HBC and the molecular signatures identified in CMT samples that have been explored to date. We proposed a detailed molecular exploration of the CMT stroma using state-of-the-art methods in transcriptomics and proteomics. Using CMT as an analog for HBC not only helps to understand the complexities of the disease, but also to advance comparative oncology to the next level to prove the claim of dogs as a valid translational model.
(© 2024 John Wiley & Sons Ltd.)
References: F. Bray, M. Laversanne, H. Sung, et al., “Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA: A Cancer Journal for Clinicians 74, no. 3 (2024): 229–263, https://doi.org/10.3322/caac.21834.
G. P. Burrai, A. Gabrieli, V. Moccia, et al., “A Statistical Analysis of Risk Factors and Biological Behavior in Canine Mammary Tumors: A Multicenter Study,” Animals 10, no. 9 (2020): 1–12, https://doi.org/10.3390/ani10091687.
R. Schneider, “Comparison of Age, Sex, and Incidence Rates in Human and Canine Breast Cancer,” Cancer 26, no. 2 (1970): 419–426, https://doi.org/10.1002/1097‐0142(197008)26:2<419::AID‐CNCR2820260225>3.0.CO;2‐U.
K. U. Sorenmo, R. Rasotto, V. Zappulli, and M. H. Goldschmidt, “Development, Anatomy, Histology, Lymphatic Drainage, Clinical Features, and Cell Differentiation Markers of Canine Mammary Gland Neoplasms,” Veterinary Pathology 48, no. 1 (2011): 85–97, https://doi.org/10.1177/0300985810389480.
J. Abadie, F. Nguyen, D. Loussouarn, et al., “Canine Invasive Mammary Carcinomas as Models of Human Breast Cancer. Part 2: Immunophenotypes and Prognostic Significance,” Breast Cancer Research and Treatment 167, no. 2 (2018): 459–468, https://doi.org/10.1007/s10549‐017‐4542‐8.
F. Nguyen, L. Peña, C. Ibisch, et al., “Canine Invasive Mammary Carcinomas as Models of Human Breast Cancer. Part 1: Natural History and Prognostic Factors,” Breast Cancer Research and Treatment 167, no. 3 (2018): 635–648, https://doi.org/10.1007/s10549‐017‐4548‐2.
D. B. Santos, G. J. Fernandez, L. M. C. Pardini, M. I. M. C. Pardini, and A. C. Ferrasi, “Transcriptomic Profile of Canine Mammary Ductal Carcinoma,” International Journal of Molecular Sciences 24, no. 6 (2023): 5212, https://doi.org/10.3390/ijms24065212.
M. Goldschmidt, L. Pena, R. Rasotto, and V. Zappulli, “Classification and Grading of Canine Mammary Tumors,” Veterinary Pathology 48, no. 1 (2011): 117–131, https://doi.org/10.1177/0300985810393258.
K. Goebel and N. D. Merner, “A Monograph Proposing the Use of Canine Mammary Tumours as a Model for the Study of Hereditary Breast Cancer Susceptibility Genes in Humans,” Veterinary Medicine and Science 3, no. 2 (2017): 51–62, https://doi.org/10.1002/vms3.61.
I. Gordon, M. Paoloni, C. Mazcko, and C. Khanna, “The Comparative Oncology Trials Consortium: Using Spontaneously Occurring Cancers in Dogs to Inform the Cancer Drug Development Pathway,” PLoS Medicine 6, no. 10 (2009): e1000161, https://doi.org/10.1371/journal.pmed.1000161.
M. Paoloni and C. Khanna, “Translation of New Cancer Treatments From Pet Dogs to Humans,” Nature Reviews. Cancer 8, no. 2 (2008): 147–156, https://doi.org/10.1038/nrc2273.
J. L. Rowell, D. O. McCarthy, and C. E. Alvarez, “Dog Models of Naturally Occurring Cancer,” Trends in Molecular Medicine 17, no. 7 (2011): 380–388, https://doi.org/10.1016/j.molmed.2011.02.004.
S. Anoop, “Dog as an Animal Model in pre‐Clinical Research,” in Animal Models in Research: Principles and Practice, eds. H. Vijayakumar Sreelatha , S. Patel , and P. Nagarajan (Singapore: Springer Nature, 2024), 469–540, https://doi.org/10.1007/978‐981‐97‐0048‐6_17.
D. G. O'Neill, D. B. Church, P. D. McGreevy, P. C. Thomson, and D. C. Brodbelt, “Longevity and Mortality of Owned Dogs in England,” Veterinary Journal 198, no. 3 (2013): 638–643, https://doi.org/10.1016/j.tvjl.2013.09.020.
M. J. Day, “Immune System Development in the Dog and Cat,” Journal of Comparative Pathology 137, no. 1 (2007): S10–S15, https://doi.org/10.1016/j.jcpa.2007.04.005.
M. Schreiber, D. Kantimm, D. Kirchhoff, G. Heimann, and A. S. Bhargava, “Concentrations in Serum of IgG, IgM and IgA and Their age‐Dependence in Beagle Dogs as Determined by a Newly Developed Enzyme‐Linked‐Immuno‐Sorbent‐Assay (ELISA),” European Journal of Clinical Chemistry and Clinical Biochemistry 30, no. 11 (1992): 775–778, https://doi.org/10.1515/cclm.1992.30.11.775.
P. J. Felsburg, “Overview of Immune System Development in the Dog: Comparison With Humans,” Human & Experimental Toxicology 21, no. 9–10 (2002): 487–492, https://doi.org/10.1191/0960327102ht286oa.
D. P. Stites and R. F. C. Rodgers, “Clinical Laboratory Methods for Detection of Antigens and Antibodies,” in Basic and Clinical Immunology, 6th ed., eds. D. P. Stites , J. D. Stobo , H. H. Fudenberg , and J. V. Wells (Norwalk and Los Altos: Appleton and Lange, 1987), 241–284.
M. Gray, J. Meehan, C. Martínez‐Pérez, et al., “Naturally‐Occurring Canine Mammary Tumors as a Translational Model for Human Breast Cancer,” Frontiers in Oncology 10, no. April (2020): 1–17, https://doi.org/10.3389/fonc.2020.00617.
D. Liu, H. Xiong, A. E. Ellis, et al., “Molecular Homology and Difference Between Spontaneous Canine Mammary Cancer and Human Breast Cancer,” Cancer Research 74, no. 18 (2014): 5045–5056, https://doi.org/10.1158/0008‐5472.CAN‐14‐0392.
E. Markkanen, “Know thy Model: Charting Molecular Homology in Stromal Reprogramming Between Canine and Human Mammary Tumors,” Frontiers in Cell and Development Biology 7, no. December (2019): 1–12, https://doi.org/10.3389/fcell.2019.00348.
S. M. Abdelmegeed and S. Mohammed, “Canine Mammary Tumors as a Model for Human Disease,” Oncology Letters 15, no. 6 (2018): 8195–8205, https://doi.org/10.3892/ol.2018.8411.
M. I. Carvalho, R. Silva‐Carvalho, I. Pires, et al., “A Comparative Approach of Tumor‐Associated Inflammation in Mammary Cancer Between Humans and Dogs,” BioMed Research International 12 (2016): 4917387, https://doi.org/10.1155/2016/4917387.
S. Visan, O. Balacescu, I. Berindan‐Neagoe, and C. Catoi, “In Vitro Comparative Models for Canine and Human Breast Cancers,” Clujul Medical 89, no. 1 (2016): 38–49, https://doi.org/10.15386/cjmed‐519.
C. H. Wong, K. W. Siah, and A. W. Lo, “Estimation of Clinical Trial Success Rates and Related Parameters,” Biostatistics 20, no. 2 (2019): 273–286, https://doi.org/10.1093/biostatistics/kxx069.
M. Bulkowska, A. Rybicka, K. M. Senses, et al., “MicroRNA Expression Patterns in Canine Mammary Cancer Show Significant Differences Between Metastatic and Non‐Mmetastatic Tumours,” BMC Cancer 17, no. 1 (2017): 728, https://doi.org/10.1186/s12885‐017‐3751‐1.
R. Klopfleisch, D. Lenze, M. Hummel, and A. D. Gruber, “Metastatic Canine Mammary Carcinomas can Be Identified by a Gene Expression Profile That Partly Overlaps With Human Breast Cancer Profiles,” BMC Cancer 10, no. 1 (2010): 618, https://doi.org/10.1186/1471‐2407‐10‐618.
R. Klopfleisch, P. Klose, C. Weise, et al., “Proteome of Metastatic Canine Mammary Carcinomas: Similarities to and Differences From Human Breast Cancer,” Journal of Proteome Research 9, no. 12 (2010): 6380–6391, https://doi.org/10.1021/pr100671c.
R. Klopfleisch, P. Klose, and A. D. Gruber, “The Combined Expression Pattern of BMP2, LTBP4, and DERL1 Discriminates Malignant From Benign Canine Mammary Tumors,” Veterinary Pathology 47, no. 3 (2010): 446–454, https://doi.org/10.1177/0300985810363904.
A. Pöschel, E. Beebe, L. Kunz, et al., “Identification of Disease‐Promoting Stromal Components by Comparative Proteomic and Transcriptomic Profiling of Canine Mammary Tumors Using Laser‐Capture Microdissected FFPE Tissue,” Neoplasia (United States) 23, no. 4 (2021): 400–412, https://doi.org/10.1016/j.neo.2021.03.001.
A. Rybicka, J. Mucha, K. Majchrzak, et al., “Analysis of microRNA Expression in Canine Mammary Cancer Stem‐Like Cells Indicates Epigenetic Regulation of Transforming Growth Factor‐Beta Signaling,” Journal of Physiology and Pharmacology 66, no. 1 (2015): 29–37.
A. Santos, C. Lopes, F. Gärtner, and A. J. F. Matos, “VEGFR‐2 Expression in Malignant Tumours of the Canine Mammary Gland: A Prospective Survival Study,” Veterinary and Comparative Oncology 14 (2014): 1–10, https://doi.org/10.1111/vco.12107.
F. C. Nunes, C. B. Campos, S. V. Teixeira, A. C. Bertagnolli, G. E. Lavalle, and G. D. Cassali, “Epidemiological, Clinical and Pathological Evaluation of Overall Survival in Canines With Mammary Neoplasms,” Arquivo Brasileiro de Medicina Veterinária e Zootecnia 70, no. 6 (2018): 1714–1722, https://doi.org/10.1590/1678‐4162‐10217.
H. H. Zheng, C. T. Du, C. Yu, et al., “Epidemiological Investigation of Canine Mammary Tumors in Mainland China Between 2017 and 2021,” Frontiers in Veterinary Science 9 (2022): 843390, https://doi.org/10.3389/fvets.2022.843390.
G. Cassali, P. Jark, C. Gamba, et al., “Consensus Regarding the Diagnosis, Prognosis and Treatment of Canine and Feline Mammary Tumors‐2019,” Brazilian Journal of Veterinary Pathology 13, no. 3 (2019): 555–574, https://doi.org/10.24070/bjvp.1983‐0246.v13i3p555‐574.
E. Ferreira, A. C. Bertagnolli, M. F. Cavalcanti, F. C. Schmitt, and G. D. Cassali, “The Relationship Between Tumour Size and Expression of Prognostic Markers in Benign and Malignant Canine Mammary Tumours,” Veterinary and Comparative Oncology 7 (2009): 230–235, https://doi.org/10.1111/j.1476‐5829.2009.00193.x.
F. L. Queiroga, T. Raposo, M. I. Carvalho, J. Prada, and I. Pires, “Canine Mammary Tumours as a Model to Study Human Breast Cancer: Most Recent Findings,” In Vivo (Brooklyn) 25, no. 3 (2011): 455–465, https://www.ncbi.nlm.nih.gov/pubmed/21576423.
R. Klopfleisch, H. Von Euler, G. Sarli, S. S. Pinho, F. Gärtner, and A. D. Gruber, “Molecular Carcinogenesis of Canine Mammary Tumors: News From an Old Disease,” Veterinary Pathology 48, no. 1 (2011): 98–116, https://doi.org/10.1177/0300985810390826.
N. Sleeckx, H. De Rooster, E. J. Veldhuis Kroeze, C. Van Ginneken, and L. Van Brantegem, “Canine Mammary Tumours, an Overview,” Reproduction in Domestic Animals 46, no. 6 (2011): 1112–1131, https://doi.org/10.1111/j.1439‐0531.2011.01816.x.
S. H. Giordano and G. N. Hortobagyi, “Clinical Progress and the Main Problems That Must Be Addressed,” Breast Cancer Research 5, no. 6 (2003): 284–288, https://doi.org/10.1186/bcr608.
M. D. P. Alenza, E. Tabanera, and L. Peña, “Inflammatory Mammary Carcinoma in Dogs: 33 Cases (1995–1999),” Journal of the American Veterinary Medical Association 219, no. 8 (2001): 1110–1114.
L. L. Peña, A. I. Nieto, D. Pérez‐Alenza, P. Cuesta, and M. Castaño, “Immunohistochemical Detection of Ki‐67 and PCNA in Canine Mammary Tumors: Relationship to Clinical and Pathologic Variables,” Journal of Veterinary Diagnostic Investigation 10, no. 3 (1998): 237–246, https://doi.org/10.1177/104063879801000303.
L. Peña, M. D. Perez‐Alenza, A. Rodriguez‐Bertos, and A. Nieto, “Canine Inflammatory Mammary Carcinoma: Histopathology, Immunohistochemistry and Clinical Implications of 21 Cases,” Breast Cancer Research and Treatment 78, no. 2 (2003): 141–148, https://doi.org/10.1023/A:1022991802116.
T. P. Raposo, B. C. Beirao, I. Pires, et al., “Immunohistochemical Expression of CCR2, CSF1R and MMP9 in Canine Inflammatory Mammary Carcinomas,” Anticancer Research 36, no. 4 (2016): 1805–1813, https://www.ncbi.nlm.nih.gov/pubmed/27069163.
F. L. Queiroga, M. D. Perez‐Alenza, G. Silvan, L. Pena, C. Lopes, and J. C. Illera, “Cox‐2 Levels in Canine Mammary Tumors, Including Inflammatory Mammary Carcinoma: Clinicopathological Features and Prognostic Significance,” Anticancer Research 25, no. 6B (2005): 4269–4275, https://www.ncbi.nlm.nih.gov/pubmed/16309227.
L. Bingle, N. J. Brown, and C. E. Lewis, “The Role of Tumour‐Associated Macrophages in Tumour Progression: Implications for New Anticancer Therapies,” Journal of Pathology 196, no. 3 (2002): 254–265, https://doi.org/10.1002/path.1027.
C. E. Lewis, R. Leek, A. Harris, and J. O. McGee, “Cytokine Regulation of Angiogenesis in Breast Cancer: The Role of Tumor‐Associated Macrophages,” Journal of Leukocyte Biology 57, no. 5 (1995): 747–751, https://doi.org/10.1002/jlb.57.5.747.
P. J. Murray and T. A. Wynn, “Protective and Pathogenic Functions of Macrophage Subsets,” Nature Reviews. Immunology 11, no. 11 (2011): 723–737, https://doi.org/10.1038/nri3073.
T. Chanmee, P. Ontong, K. Konno, and N. Itano, “Tumor‐Associated Macrophages as Major Players in the Tumor Microenvironment,” Cancers (Basel) 6, no. 3 (2014): 1670–1690, https://doi.org/10.3390/cancers6031670.
B. C. Beirao, T. Raposo, L. Y. Pang, and D. J. Argyle, “Canine Mammary Cancer Cells Direct Macrophages Toward an Intermediate Activation State Between M1/M2,” BMC Veterinary Research 11 (2015): 151, https://doi.org/10.1186/s12917‐015‐0473‐y.
B. Z. Qian and J. W. Pollard, “Macrophage Diversity Enhances Tumor Progression and Metastasis,” Cell 141, no. 1 (2010): 39–51, https://doi.org/10.1016/j.cell.2010.03.014.
M. Kerboeuf, D. A. Haugeberg, T. Olsen, et al., “Tumor‐Associated Macrophages in Canine Visceral Hemangiosarcoma,” Veterinary Pathology 61, no. 1 (2024): 32–45, https://doi.org/10.1177/03009858231179947.
T. Ichimura, T. Morikawa, T. Kawai, et al., “Prognostic Significance of CD204‐Positive Macrophages in Upper Urinary Tract Cancer,” Annals of Surgical Oncology 21, no. 6 (2014): 2105–2112, https://doi.org/10.1245/s10434‐014‐3503‐2.
M. Heusinkveld and S. H. Van der Burg, “Identification and Manipulation of Tumor Associated Macrophages in Human Cancers,” Journal of Translational Medicine 9 (2011): 216, https://doi.org/10.1186/1479‐5876‐9‐216.
Y. Komohara, D. Niino, K. Ohnishi, K. Ohshima, and M. Takeya, “Role of Tumor‐Associated Macrophages in Hematological Malignancies,” Pathology International 65, no. 4 (2015): 170–176, https://doi.org/10.1111/pin.12259.
F. Parisi, M. Tesi, F. Millanta, M. Gnocchi, and A. Poli, “M1 and M2 Tumour‐Associated Macrophages Subsets in Canine Malignant Mammary Tumours: An Immunohistochemical Study,” Research in Veterinary Science 136 (2021): 32–38, https://doi.org/10.1016/j.rvsc.2021.02.007.
S. R. Lakhani, I. O. Ellis, S. J. Schnitt, P. H. Tan, and M. J. Van de Vijver, Breast Tumours, WHO Classification of Tumours, vol. 2, 5th ed. (Lyon, France: International Agency for Research on Cancer, 2019).
S. C. Doebar, C. De Monye, H. Stoop, J. Rothbarth, S. P. Willemsen, and C. H. Van Deurzen, “Ductal Carcinoma in Situ Diagnosed by Breast Needle Biopsy: Predictors of Invasion in the Excision Specimen,” Breast 27 (2016): 15–21, https://doi.org/10.1016/j.breast.2016.02.014.
S. I. Mohammed, S. Utturkar, M. Lee, et al., “Ductal Carcinoma in Situ Progression in Dog Model of Breast Cancer,” Cancers (Basel) 12, no. 2 (2020): 418, https://doi.org/10.3390/cancers12020418.
E. Antuofermo, M. A. Miller, S. Pirino, J. Xie, S. Badve, and S. I. Mohammed, “Spontaneous Mammary Intraepithelial Lesions in Dogs—A Model of Breast Cancer,” Cancer Epidemiology, Biomarkers & Prevention 16, no. 11 (2007): 2247–2256, https://doi.org/10.1158/1055‐9965.EPI‐06‐0932.
P. K. Lo, Y. Zhang, Y. Yao, et al., “Tumor‐Associated Myoepithelial Cells Promote the Invasive Progression of Ductal Carcinoma in Situ Through Activation of TGFbeta Signaling,” Journal of Biological Chemistry 292, no. 27 (2017): 11466–11484, https://doi.org/10.1074/jbc.M117.775080.
J. Watson, T. Wang, K. L. Ho, et al., “Human Basal‐Like Breast Cancer Is Represented by One of the Two Mammary Tumor Subtypes in Dogs,” Breast Cancer Research 25, no. 1 (2023): 1–18, https://doi.org/10.1186/s13058‐023‐01705‐5.
H. J. Burstein, “Systemic Therapy for Estrogen Receptor‐Positive, HER2‐Negative Breast Cancer,” New England Journal of Medicine 383, no. 26 (2020): 2557–2570, https://doi.org/10.1056/NEJMra1307118.
J. Y. Kwon, N. Moskwa, W. Kang, T. M. Fan, and C. Lee, “Canine as a Comparative and Translational Model for Human Mammary Tumor,” Journal of Breast Cancer 26, no. 1 (2023): 1–13, https://doi.org/10.4048/jbc.2023.26.e4.
E. Vazquez, Y. Lipovka, A. Cervantes‐Arias, et al., “Canine Mammary Cancer: State of the Art and Future Perspectives,” Animals 13, no. 19 (2023): 3147, https://doi.org/10.3390/ani13193147.
M. I. Carvalho, I. Pires, J. Prada, L. Lobo, and F. L. Queiroga, “Ki‐67 and PCNA Expression in Canine Mammary Tumors and Adjacent Nonneoplastic Mammary Glands: Prognostic Impact by a Multivariate Survival Analysis,” Veterinary Pathology 53, no. 6 (2016): 1138–1146, https://doi.org/10.1177/0300985816646429.
T. Muto, S. Wakui, H. Takahashi, et al., “P53 Gene Mutations Occurring in Spontaneous Benign and Malignant Mammary Tumors of the Dog,” Veterinary Pathology 37, no. 3 (2000): 248–253, https://doi.org/10.1354/vp.37‐3‐248.
L. Steffens Reinhardt, X. Zhang, K. Groen, et al., “Alterations in the p53 Isoform Ratio Govern Breast Cancer Cell Fate in Response to DNA Damage,” Cell Death & Disease 13, no. 10 (2022): 907, https://doi.org/10.1038/s41419‐022‐05349‐9.
A. Canadas, M. Santos, R. Medeiros, and P. Dias‐Pereira, “Influence of E‐Cadherin Genetic Variation in Canine Mammary Tumour Risk, Clinicopathological Features and Prognosis,” Veterinary and Comparative Oncology 17, no. 4 (2019): 489–496, https://doi.org/10.1111/vco.12510.
M. A. Rodrigues, A. L. Caldeira‐Brant, D. A. Gomes, T. L. Silveira, H. Chiarini‐Garcia, and G. D. Cassali, “Characterization of Neoplastic Cells Outlining the Cystic Space of Invasive Micropapillary Carcinoma of the Canine Mammary Gland,” BMC Veterinary Research 17, no. 1 (2021): 130, https://doi.org/10.1186/s12917‐021‐02807‐y.
S. Sakalauskaite, V. Salteniene, D. Nikitina, et al., “VEGF‐B, VEGF‐A, FLT‐1, KDR, ERBB2, EGFR, GRB2, RAC1, CDH1 and HYAL‐1 Genes Expression Analysis in Canine Mammary Gland Tumors and the Association With Tumor ClinicoPathological Parameters and Dog Breed Assessment,” Veterinary Sciences 8, no. 10 (2021): 212, https://doi.org/10.3390/vetsci8100212.
G. P. Burrai, A. Tanca, M. R. De Miglio, et al., “Investigation of HER2 Expression in Canine Mammary Tumors by Antibody‐Based, Transcriptomic and Mass Spectrometry Analysis: Is the Dog a Suitable Animal Model for Human Breast Cancer?” Tumor Biology 36, no. 11 (2015): 9083–9091, https://doi.org/10.1007/s13277‐015‐3661‐2.
T. M. Kim, I. S. Yang, B. J. Seung, et al., “Cross‐Species Oncogenic Signatures of Breast Cancer in Canine Mammary Tumors,” Nature Communications 11, no. 1 (2020): 3616, https://doi.org/10.1038/s41467‐020‐17458‐0.
K. Sorenmo, “Canine Mammary Gland Tumors,” Veterinary Clinics: Small Animal Practice 33, no. 3 (2003): 573–596, https://doi.org/10.1016/s0195‐5616(03)00020‐2.
E. D. S. Soares, F. L. Valente, C. C. Rocha, et al., “Prognostic Factors for Cancer‐Specific Survival and Disease‐Free Interval of Dogs With Mammary Carcinomas,” Veterinary Medicine International 2023 (2023): 6890707–6890712, https://doi.org/10.1155/2023/6890707.
V. M. Kristiansen, L. Pena, L. Diez Cordova, et al., “Effect of Ovariohysterectomy at the Time of Tumor Removal in Dogs With Mammary Carcinomas: A Randomized Controlled Trial,” Journal of Veterinary Internal Medicine 30, no. 1 (2016): 230–241, https://doi.org/10.1111/jvim.13812.
K. U. Sorenmo, A. C. Durham, E. Radaelli, et al., “The Estrogen Effect; Clinical and Histopathological Evidence of Dichotomous Influences in Dogs With Spontaneous Mammary Carcinomas,” PLoS One 14, no. 10 (2019): 1–24, https://doi.org/10.1371/journal.pone.0224504.
A. Cao, L. Huang, and Z. Shao, “The Preventive Intervention of Hereditary Breast Cancer,” Advances in Experimental Medicine and Biology 1026 (2017): 41–57, https://doi.org/10.1007/978‐981‐10‐6020‐5_3.
A. Egenvall, B. N. Bonnett, P. Ohagen, P. Olson, A. Hedhammar, and H. von Euler, “Incidence of and Survival After Mammary Tumors in a Population of Over 80,000 Insured Female Dogs in Sweden From 1995 to 2002,” Preventive Veterinary Medicine 69, no. 1–2 (2005): 109–127, https://doi.org/10.1016/j.prevetmed.2005.01.014.
P. Rivera, M. Melin, T. Biagi, et al., “Mammary Tumor Development in Dogs Is Associated With BRCA1 and BRCA2,” Cancer Research 69, no. 22 (2009): 8770–8774, https://doi.org/10.1158/0008‐5472.CAN‐09‐1725.
B. Brunetti, B. Bacci, C. Angeli, C. Benazzi, and L. V. Muscatello, “p53, ER, and Ki67 Expression in Canine Mammary Carcinomas and Correlation With Pathological Variables and Prognosis,” Veterinary Pathology 58, no. 2 (2021): 325–331, https://doi.org/10.1177/0300985820973462.
H. Rodrigues, M. I. Carvalho, I. Pires, J. Prada, and F. L. Queiroga, “Clinicopathological Significance of Caspase‐3 and Ki‐67 Expression in Canine Mammary Gland Tumours,” Acta Veterinaria Hungarica 64, no. 1 (2016): 78–89, https://doi.org/10.1556/004.2016.009.
M. Mainenti, R. Rasotto, P. Carnier, and V. Zappulli, “Oestrogen and Progesterone Receptor Expression in Subtypes of Canine Mammary Tumours in Intact and Ovariectomised Dogs,” Veterinary Journal 202, no. 1 (2014): 62–68, https://doi.org/10.1016/j.tvjl.2014.06.003.
B. Ács, V. Zámbó, L. Vízkeleti, et al., “Ki‐67 as a Controversial Predictive and Prognostic Marker in Breast Cancer Patients Treated With Neoadjuvant Chemotherapy,” Diagnostic Pathology 12, no. 1 (2017): 20, https://doi.org/10.1186/s13000‐017‐0608‐5.
M. Nowak, J. A. Madej, B. Pula, P. Dziegiel, and R. Ciaputa, “Expression of Matrix Metalloproteinase 2 (MMP‐2), E‐Cadherin and Ki‐67 in Metastatic and Non‐Metastatic Canine Mammary Carcinomas,” Irish Veterinary Journal 69 (2015): 9, https://doi.org/10.1186/s13620‐016‐0068‐3.
A. Nieto, M. D. Pérez‐Alenza, N. Del Castillo, E. Tabanera, M. Castaño, and L. Peña, “BRCA1 Expression in Canine Mammary Dysplasias and Tumours: Relationship With Prognostic Variables,” Journal of Comparative Pathology 128, no. 4 (2003): 260–268, https://doi.org/10.1053/jcpa.2002.0631.
M. Jurikova, L. Danihel, S. Polak, and I. Varga, “Ki67, PCNA, and MCM Proteins: Markers of Proliferation in the Diagnosis of Breast Cancer,” Acta Histochemica 118, no. 5 (2016): 544–552, https://doi.org/10.1016/j.acthis.2016.05.002.
D. A. P. C. Zuccari, C. R. Berton, A. C. B. Terzian, and C. M. Ruiz, “Prognostic and Predictive Factors in Mammary Neoplasias Immunohistochemical Markers Importance in Human and Canine Species: Comparative Study,” Arq Ciênc Saúde 15, no. 4 (2008): 193–202.
W. Yue, J. D. Yager, J. P. Wang, E. R. Jupe, and R. J. Santen, “Estrogen Receptor‐Dependent and Independent Mechanisms of Breast Cancer Carcinogenesis,” Steroids 78, no. 2 (2013): 161–170, https://doi.org/10.1016/j.steroids.2012.11.001.
I. Dolka, M. Krol, and R. Sapierzynski, “Evaluation of Apoptosis‐Associated Protein (Bcl‐2, Bax, Cleaved Caspase‐3 and p53) Expression in Canine Mammary Tumors: An Immunohistochemical and Prognostic Study,” Research in Veterinary Science 105 (2016): 124–133, https://doi.org/10.1016/j.rvsc.2016.02.004.
W. L. Hsu, Y. H. Huang, T. J. Chang, M. L. Wong, and S. C. Chang, “Single Nucleotide Variation in Exon 11 of Canine BRCA2 in Healthy and Cancerous Mammary Tissue,” Veterinary Journal 184, no. 3 (2010): 351–356, https://doi.org/10.1016/j.tvjl.2009.03.022.
R. Klopfleisch and A. D. Gruber, “Differential Expression of Cell Cycle Regulators p21, p27 and p53 in Metastasizing Canine Mammary Adenocarcinomas Versus Normal Mammary Glands,” Research in Veterinary Science 87, no. 1 (2009): 91–96, https://doi.org/10.1016/j.rvsc.2008.12.010.
P. Bertheau, J. Lehmann‐Che, M. Varna, et al., “p53 in Breast Cancer Subtypes and new Insights Into Response to Chemotherapy,” Breast 22, no. 2 (2013): S27–S29, https://doi.org/10.1016/j.breast.2013.07.005.
A. J. F. Matos, C. Lopes, J. Carvalheira, M. Santos, G. R. Rutteman, and F. Gärtner, “E‐Cadherin Expression in Canine Malignant Mammary Tumours: Relationship to Other Clinico‐Pathological Variables,” Journal of Comparative Pathology 134, no. 2–3 (2006): 182–189, https://doi.org/10.1016/j.jcpa.2005.10.004.
A. Gama, J. Paredes, F. Gartner, A. Alves, and F. Schmitt, “Expression of E‐Cadherin, P‐Cadherin and Beta‐Catenin in Canine Malignant Mammary Tumours in Relation to Clinicopathological Parameters, Proliferation and Survival,” Veterinary Journal 177, no. 1 (2008): 45–53, https://doi.org/10.1016/j.tvjl.2007.05.024.
Z. Li, S. Yin, L. Zhang, W. Liu, and B. Chen, “Prognostic Value of Reduced E‐Cadherin Expression in Breast Cancer: A Meta‐Analysis,” Oncotarget 8, no. 10 (2017): 16445–16455, https://doi.org/10.18632/oncotarget.14860.
L. C. Campos, J. O. Silva, F. S. Santos, et al., “Prognostic Significance of Tissue and Serum HER2 and MUC1 in Canine Mammary Cancer,” Journal of Veterinary Diagnostic Investigation 27, no. 4 (2015): 531–535, https://doi.org/10.1177/1040638715592445.
E. Manuali, A. De Giuseppe, F. Feliziani, et al., “CA 15‐3 Cell Lines and Tissue Expression in Canine Mammary Cancer and the Correlation Between Serum Levels and Tumour Histological Grade,” BMC Veterinary Research 8 (2012): 86, https://doi.org/10.1186/1746‐6148‐8‐86.
S. Rachagani, M. P. Torres, N. Moniaux, and S. K. Batra, “Current Status of Mucins in the Diagnosis and Therapy of Cancer,” BioFactors 35, no. 6 (2009): 509–527, https://doi.org/10.1002/biof.64.
A. A. Santos, C. C. Lopes, J. R. Ribeiro, et al., “Identification of Prognostic Factors in Canine Mammary Malignant Tumours: A Multivariable Survival Study,” BMC Veterinary Research 9 (2013): 1, https://doi.org/10.1186/1746‐6148‐9‐1.
J. Verrax, F. Defresne, F. Lair, et al., “Delivery of Soluble VEGF Receptor 1 (sFlt1) by Gene Electrotransfer as a New Antiangiogenic Cancer Therapy,” Molecular Pharmaceutics 8, no. 3 (2011): 701–708, https://doi.org/10.1021/mp100268t.
M. I. Carvalho, I. Pires, J. Prada, et al., “High COX‐2 Expression Is Associated With Increased Angiogenesis, Proliferation and Tumoural Inflammatory Infiltrate in Canine Malignant Mammary Tumours: A Multivariate Survival Study,” Veterinary and Comparative Oncology 15, no. 2 (2017): 619–631, https://doi.org/10.1111/vco.12206.
B. Singh, A. Berry Ja Fau‐Shoher, G. D. Shoher A Fau‐Ayers, C. Ayers Gd Fau‐Wei, A. Wei C Fau‐Lucci, and A. Lucci, “COX‐2 Involvement in Breast Cancer Metastasis to Bone,” Oncogene 31, no. 26 (2007): 3789–3796, https://doi.org/10.1038/sj.onc.1210154.
M. I. Carvalho, M. J. Guimarães, I. Pires, et al., “EGFR and Microvessel Density in Canine Malignant Mammary Tumours,” Research in Veterinary Science 95, no. 3 (2013): 1094–1099, https://doi.org/10.1016/j.rvsc.2013.09.003.
M. Kandefer‐Gola, M. Nowak, R. Ciaputa, and J. A. Madej, “Usefulness of Immunohistochemical Indicators for Diagnosis and Prognosis of Poorly Differentiated Tumours,” Journal of Veterinary Research 60, no. 3 (2016): 323–330, https://doi.org/10.1515/jvetres‐2016‐0049.
A. Gama, F. Gärtner, A. Alves, and F. Schmitt, “Immunohistochemical Expression of Epidermal Growth Factor Receptor (EGFR) in Canine Mammary Tissues,” Research in Veterinary Science 87, no. 3 (2009): 432–437, https://doi.org/10.1016/j.rvsc.2009.04.016.
H. Masuda, D. Zhang, C. Bartholomeusz, H. Doihara, G. N. Hortobagyi, and N. T. Ueno, “Role of Epidermal Growth Factor Receptor in Breast Cancer,” Breast Cancer Research and Treatment 136, no. 2 (2012): 331–345, https://doi.org/10.1007/s10549‐012‐2289‐9.
A. P. Dutra, N. V. Granja, F. C. Schmitt, and G. D. Cassali, “C‐erbB‐2 Expression and Nuclear Pleomorphism in Canine Mammary Tumors,” Brazilian Journal of Medical and Biological Research 37, no. 11 (2004): 1673–1681, https://doi.org/10.1590/s0100‐879x2004001100013.
J. M. De Las Mulas, Y. Millan, and R. Dios, “A Prospective Analysis of Immunohistochemically Determined Estrogen Receptor Alpha and Progesterone Receptor Expression and Host and Tumor Factors as Predictors of Disease‐Free Period in Mammary Tumors of the Dog,” Veterinary Pathology 42, no. 2 (2005): 200–212, https://doi.org/10.1354/vp.42‐2‐200.
H. Shinoda, M. E. Legare, G. L. Mason, et al., “Significance of ERα, HER2, and CAV1 Expression and Molecular Subtype Classification to Canine Mammary Gland Tumor,” Journal of Veterinary Diagnostic Investigation 26, no. 3 (2014): 390–403, https://doi.org/10.1177/1040638714527289.
M. De Pedro, S. Baeza, M. T. Escudero, et al., “Effect of COX‐2 Inhibitors and Other Non‐Steroidal Inflammatory Drugs on Breast Cancer Risk: A Meta‐Analysis,” Breast Cancer Research and Treatment 149, no. 2 (2015): 525–536, https://doi.org/10.1007/s10549‐015‐3267‐9.
F. Millanta, M. Calandrella, G. Bari, M. Niccolini, I. Vannozzi, and A. Poli, “Comparison of Steroid Receptor Expression in Normal, Dysplastic, and Neoplastic Canine and Feline Mammary Tissues,” Research in Veterinary Science 79, no. 3 (2005): 225–232, https://doi.org/10.1016/j.rvsc.2005.02.002.
M. E. Hammond, D. F. Hayes, A. C. Wolff, P. B. Mangu, and S. Temin, “American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations for Immunohistochemical Testing of Estrogen and Progesterone Receptors in Breast Cancer,” Journal of Oncology Practice 6, no. 4 (2010): 195–197, https://doi.org/10.1200/JOP.777003.
M. Spoerri, F. Guscetti, S. Hartnack, et al., “Endocrine Control of Canine Mammary Neoplasms: Serum Reproductive Hormone Levels and Tissue Expression of Steroid Hormone, Prolactin and Growth Hormone Receptors,” BMC Veterinary Research 11 (2015): 235, https://doi.org/10.1186/s12917‐015‐0546‐y.
C. C. Chang, M. H. Tsai, J. W. Liao, J. P. Chan, M. L. Wong, and S. C. Chang, “Evaluation of Hormone Receptor Expression for use in Predicting Survival of Female Dogs With Malignant Mammary Gland Tumors,” Journal of the American Veterinary Medical Association 235, no. 4 (2009): 391–396, https://doi.org/10.2460/javma.235.4.391.
M. E. Cenciarini and C. J. Proietti, “Molecular Mechanisms Underlying Progesterone Receptor Action in Breast Cancer: Insights Into Cell Proliferation and Stem Cell Regulation,” Steroids 152 (2019): 108503, https://doi.org/10.1016/j.steroids.2019.108503.
X. Gabaldó Barrios, M. D. Sarabia Meseguer, M. Marín Vera, et al., “Molecular Characterization and Clinical Interpretation of BRCA1/BRCA2 Variants in Families from Murcia (South–Eastern Spain) with Hereditary Breast and Ovarian Cancer: Clinical‐Pathological Features in BRCA Carriers and Non‐Carriers,” (1573–7292 (Electronic)).
R. Klopfleisch and A. D. Gruber, “Increased Expression of BRCA2 and RAD51 in Lymph Node Metastases of Canine Mammary Adenocarcinomas,” Veterinary Pathology 46, no. 3 (2009): 416–422, https://doi.org/10.1354/vp.08‐VP‐0212‐K‐FL.
Y. Yoshikawa, M. Morimatsu, K. Ochiai, et al., “Reduced Canine BRCA2 Expression Levels in Mammary Gland Tumors,” BMC Veterinary Research 11 (2015): 159, https://doi.org/10.1186/s12917‐015‐0483‐9.
A. L. Bane, D. Pinnaduwage, S. Colby, et al., “Expression Profiling of Familial Breast Cancers Demonstrates Higher Expression of FGFR2 in BRCA2‐Associated Tumors,” Breast Cancer Research and Treatment 117, no. 1 (2009): 183–191, https://doi.org/10.1007/s10549‐008‐0087‐1.
F. M. Lutful Kabir, C. E. Alvarez, and R. C. Bird, “Canine Mammary Carcinomas: A Comparative Analysis of Altered Gene Expression,” Veterinary Sciences 3, no. 1 (2015): 1, https://doi.org/10.3390/vetsci3010001.
P. Uva, L. Aurisicchio, J. Watters, et al., “Comparative Expression Pathway Analysis of Human and Canine Mammary Tumors,” BMC Genomics 10 (2009): 135, https://doi.org/10.1186/1471‐2164‐10‐135.
J. Beck, S. Hennecke, K. Bornemann‐Kolatzki, et al., “Genome Aberrations in Canine Mammary Carcinomas and Their Detection in Cell‐Free Plasma DNA,” PLoS one 8, no. 9 (2013): e75485, https://doi.org/10.1371/journal.pone.0075485.
K. M. Pawlowski, H. Maciejewski, I. Dolka, J. A. Mol, T. Motyl, and M. Krol, “Gene Expression Profiles in Canine Mammary Carcinomas of Various Grades of Malignancy,” BMC Veterinary Research 9 (2013): 78, https://doi.org/10.1186/1746‐6148‐9‐78.
P. Polak, J. Kim, L. Z. Braunstein, et al., “A Mutational Signature Reveals Alterations Underlying Deficient Homologous Recombination Repair in Breast Cancer,” Nature Genetics 49, no. 10 (2017): 1476–1486, https://doi.org/10.1038/ng.3934.
A. Da Costa, D. Lenze, M. Hummel, B. Kohn, A. D. Gruber, and R. Klopfleisch, “Identification of Six Potential Markers for the Detection of Circulating Canine Mammary Tumour Cells in the Peripheral Blood Identified by Microarray Analysis,” Journal of Comparative Pathology 146, no. 2–3 (2012): 143–151, https://doi.org/10.1016/j.jcpa.2011.06.004.
L. Marconato, A. Facchinetti, C. Zanardello, et al., “Detection and Prognostic Relevance of Circulating and Disseminated Tumour Cell in Dogs With Metastatic Mammary Carcinoma: A Pilot Study,” Cancers (Basel) 11, no. 2 (2019): 1–14, https://doi.org/10.3390/cancers11020163.
N. Von Bubnoff, “Liquid Biopsy: Approaches to Dynamic Genotyping in Cancer,” Oncology Research and Treatment 40, no. 7–8 (2017): 409–416, https://doi.org/10.1159/000478864.
J. S. Morris and S. Kopetz, “Tumor Microenvironment in Gene Signatures: Critical Biology or Confounding Noise?” Clinical Cancer Research 22, no. 16 (2016): 3989–3991, https://doi.org/10.1158/1078‐0432.CCR‐16‐1044.
A. Da Costa, B. Kohn, A. D. Gruber, and R. Klopfleisch, “Multiple RT‐PCR Markers for the Detection of Circulating Tumour Cells of Metastatic Canine Mammary Tumours,” Veterinary Journal 196, no. 1 (2013): 34–39, https://doi.org/10.1016/j.tvjl.2012.08.021.
K. M. Bussard, L. Mutkus, K. Stumpf, C. Gomez‐Manzano, and F. C. Marini, “Tumor‐Associated Stromal Cells as key Contributors to the Tumor Microenvironment,” Breast Cancer Research 18, no. 1 (2016): 84, https://doi.org/10.1186/s13058‐016‐0740‐2.
S. Yoshimoto, N. Chester, A. Xiong, et al., “Development and Pharmacokinetic Assessment of a Fully Canine Anti‐PD‐1 Monoclonal Antibody for Comparative Translational Research in Dogs With Spontaneous Tumors,” MAbs 15, no. 1 (2023): 228725, https://doi.org/10.1080/19420862.2023.2287250.
J. S. Park, S. S. Withers, J. F. Modiano, et al., “Canine Cancer Immunotherapy Studies: Linking Mouse and Human,” Journal for Immunotherapy of Cancer 4, no. 1 (2016): 1–11, https://doi.org/10.1186/s40425‐016‐0200‐7.
E. Becht, N. A. Giraldo, W. H. Fridman, E. Becht, N. A. Giraldo, and C. Sautès‐fridman, “Cancer Immune Contexture and Immunotherapy. Current Opinion in Immunology,” 39 (2016): 7–13.
D. Jiang, Z. Gao, Z. Cai, M. Wang, and J. He, “Clinicopathological and Prognostic Significance of FOXP3+ Tumor Infiltrating Lymphocytes in Patients With Breast Cancer: A Meta‐Analysis,” BMC Cancer 15, no. 1 (2015): 727, https://doi.org/10.1186/s12885‐015‐1742‐7.
A. M. K. Law, E. Lim, C. J. Ormandy, and D. Gallego‐Ortega, “The Innate and Adaptive Infiltrating Immune Systems as Targets for Breast Cancer Immunotherapy,” Endocrine‐Related Cancer 24, no. 4 (2017): R123–R144, https://doi.org/10.1530/ERC‐16‐0404.
M. Karayannopoulou, T. Anagnostou, A. Margariti, et al., “Evaluation of Blood T‐Lymphocyte Subpopulations Involved in Host Cellular Immunity in Dogs With Mammary Cancer,” Veterinary Immunology and Immunopathology 186 (2017): 45–50, https://doi.org/10.1016/j.vetimm.2017.02.004.
J. H. Kim, S. K. Chon, K. S. Im, N. H. Kim, and J. H. Sur, “Correlation of Tumor‐Infiltrating Lymphocytes to Histopathological Features and Molecular Phenotypes in Canine Mammary Carcinoma: A Morphologic and Immunohistochemical Morphometric Study,” Canadian Journal of Veterinary Research 77, no. 2 (2013): 142–149.
M. I. Carvalho, I. Pires, J. Prada, H. Gregório, L. Lobo, and F. L. Queiroga, “Intratumoral FoxP3 Expression Is Associated With Angiogenesis and Prognosis in Malignant Canine Mammary Tumors,” Veterinary Immunology and Immunopathology 178 (2016): 1–9, https://doi.org/10.1016/j.vetimm.2016.06.006.
A. H. Macchetti, H. R. C. Marana, J. S. Silva, J. M. De Andrade, A. Ribeiro‐Silva, and S. Bighetti, “Tumor‐Infiltrating CD4+ T Lymphocytes in Early Breast Cancer Reflect Lymph Node Involvement,” Clinics 61, no. 3 (2006): 203–208, https://doi.org/10.1590/S1807‐59322006000300004.
G. Curigliano, “Immunity and Autoimmunity: Revising the Concepts of Response to Breast Cancer,” Breast 20, no. 3 (2011): S71–S74, https://doi.org/10.1016/S0960‐9776(11)70298‐3.
J. Coy, A. Caldwell, L. Chow, A. Guth, and S. Dow, “PD‐1 Expression by Canine T Cells and Functional Effects of PD‐1 Blockade,” Veterinary and Comparative Oncology 15, no. 4 (2017): 1487–1502, https://doi.org/10.1111/vco.12294.
N. Maekawa, S. Konnai, R. Ikebuchi, et al., “Expression of PD‐L1 on Canine Tumor Cells and Enhancement of IFN‐γ Production From Tumor‐Infiltrating Cells by PD‐L1 Blockade,” PLoS One 9, no. 6 (2014): e98415, https://doi.org/10.1371/journal.pone.0098415.
N. Maekawa, S. Konnai, K. Hosoya, et al., “Safety and Clinical Efficacy of an Anti‐PD‐L1 Antibody (c4G12) in Dogs With Advanced Malignant Tumours,” PLoS One 18, no. 10 October (2023): 1–13, https://doi.org/10.1371/journal.pone.0291727.
N. Maekawa, S. Konnai, M. Nishimura, et al., “PD‐L1 Immunohistochemistry for Canine Cancers and Clinical Benefit of Anti‐PD‐L1 Antibody in Dogs With Pulmonary Metastatic Oral Malignant Melanoma,” NPJ Precision Oncology 5, no. 1 (2021): 1–9, https://doi.org/10.1038/s41698‐021‐00147‐6.
M. Igase, S. Inanaga, K. Tani, et al., “Long‐Term Survival of Dogs With Stage 4 Oral Malignant Melanoma Treated With Anti‐Canine PD‐1 Therapeutic Antibody: A Follow‐Up Case Report,” Veterinary and Comparative Oncology 20, no. 4 (2022): 901–905, https://doi.org/10.1111/vco.12829.
G. Hartley, E. Faulhaber, A. Caldwell, et al., “Immune Regulation of Canine Tumour and Macrophage PD‐L1 Expression,” Veterinary and Comparative Oncology 15, no. 2 (2017): 534–549, https://doi.org/10.1111/vco.12197.
S. R. Kumar, D. Y. Kim, C. J. Henry, J. N. Bryan, K. L. Robinson, and A. M. Eaton, “Programmed Death Ligand 1 Is Expressed in Canine B Cell Lymphoma and Downregulated by MEK Inhibitors,” Veterinary and Comparative Oncology 15, no. 4 (2017): 1527–1536, https://doi.org/10.1111/vco.12297.
K. C. M. Gulay, K. Aoshima, N. Maekawa, et al., “Hemangiosarcoma Cells Induce M2 Polarization and PD‐L1 Expression in Macrophages,” Scientific Reports 12, no. 1 (2022): 1–11, https://doi.org/10.1038/s41598‐022‐06203‐w.
L. Minoli, L. Licenziato, M. Kocikowski, et al., “Development of Monoclonal Antibodies Targeting Canine PD‐L1 and PD‐1 and Their Clinical Relevance in Canine Apocrine Gland Anal Sac Adenocarcinoma,” Cancers (Basel) 14, no. 24 (2022): 1–12, https://doi.org/10.3390/cancers14246188.
B. E. Lopes‐Neto, D. C. S. Nunes‐Pinheiro, J. G. V. Carvalheira, F. Schmitt, and G. M. De Fátima, “Relationship Between PD‐L1 Expression and Tumor‐Infiltrating Lymphocytes in Canine Mammary Tumor,” Acta Scientiae Veterinariae 49 (2021): 1–11, https://doi.org/10.22456/1679‐9216.102600.
W. Oh, A. M. J. Kim, D. Dhawan, et al., “Development of an Anti‐Canine PD‐L1 Antibody and Caninized PD‐L1 Mouse Model as Translational Research Tools for the Study of Immunotherapy in Humans,” Cancer Research Communications 3, no. 5 (2023): 860–873, https://doi.org/10.1158/2767‐9764.crc‐22‐0468.
L. G. Coffman, A. T. Pearson, L. G. Frisbie, et al., “Ovarian Carcinoma‐Associated Mesenchymal Stem Cells Arise From Tissue‐Specific Normal Stroma,” Stem Cells 37, no. 2 (2019): 257–269, https://doi.org/10.1002/stem.2932.
Z. Sun, S. Wang, and R. C. Zhao, “The Roles of Mesenchymal Stem Cells in Tumor Inflammatory Microenvironment,” Journal of Hematology & Oncology 7 (2014): 14, https://doi.org/10.1186/1756‐8722‐7‐14.
H. Atiya, L. Frisbie, C. Pressimone, and L. Coffman, “Mesenchymal Stem Cells in the Tumor Microenvironment,” Advances in Experimental Medicine and Biology 1234 (2020): 31–42, https://doi.org/10.1007/978‐3‐030‐37184‐5_3.
K. McLean, Y. Gong, Y. Choi, et al., “Human Ovarian Carcinoma‐Associated Mesenchymal Stem Cells Regulate Cancer Stem Cells and Tumorigenesis via Altered BMP Production,” Journal of Clinical Investigation 121, no. 8 (2011): 3206–3219, https://doi.org/10.1172/JCI45273.
T. Z. Ramuta and M. E. Kreft, “Mesenchymal Stem/Stromal Cells May Decrease Success of Cancer Treatment by Inducing Resistance to Chemotherapy in Cancer Cells,” Cancers (Basel) 14, no. 15 (2022): 3761, https://doi.org/10.3390/cancers14153761.
H. Li, W. Liu, X. Zhang, and Y. Wang, “Cancer‐Associated Fibroblast‐Secreted Collagen Triple Helix Repeat Containing‐1 Promotes Breast Cancer Cell Migration, Invasiveness and Epithelial‐Mesenchymal Transition by Activating the Wnt/Beta‐Catenin Pathway,” Oncology Letters 22, no. 6 (2021): 814, https://doi.org/10.3892/ol.2021.13075.
G. Lin, R. Yang, L. Banie, et al., “Effects of Transplantation of Adipose Tissue‐Derived Stem Cells on Prostate Tumor,” Prostate 70, no. 10 (2010): 1066–1073, https://doi.org/10.1002/pros.21140.
W. H. Huang, M. C. Chang, K. S. Tsai, M. C. Hung, H. L. Chen, and S. C. Hung, “Mesenchymal Stem Cells Promote Growth and Angiogenesis of Tumors in Mice,” Oncogene 32, no. 37 (2013): 4343–4354, https://doi.org/10.1038/onc.2012.458.
R. Ramasamy, E. W. Lam, I. Soeiro, V. Tisato, D. Bonnet, and F. Dazzi, “Mesenchymal Stem Cells Inhibit Proliferation and Apoptosis of Tumor Cells: Impact on In Vivo Tumor Growth,” Leukemia 21, no. 2 (2007): 304–310, https://doi.org/10.1038/sj.leu.2404489.
J. Luo, S. Ok Lee, L. Liang, et al., “Infiltrating Bone Marrow Mesenchymal Stem Cells Increase Prostate Cancer Stem Cell Population and Metastatic Ability via Secreting Cytokines to Suppress Androgen Receptor Signaling,” Oncogene 33, no. 21 (2014): 2768–2778, https://doi.org/10.1038/onc.2013.233.
E. L. Spaeth, J. L. Dembinski, A. K. Sasser, et al., “Mesenchymal Stem Cell Transition to Tumor‐Associated Fibroblasts Contributes to Fibrovascular Network Expansion and Tumor Progression,” PLoS one 4, no. 4 (2009): e4992, https://doi.org/10.1371/journal.pone.0004992.
Z. Tu, J. Schmoellerl, O. Mariani, et al., “The LINC01119‐SOCS5 Axis as a Critical Theranostic in Triple‐Negative Breast Cancer,” Npj Breast Cancer 7, no. 1 (2021): 69, https://doi.org/10.1038/s41523‐021‐00259‐z.
R. M. Dwyer, S. M. Potter‐Beirne, K. A. Harrington, et al., “Monocyte Chemotactic Protein‐1 Secreted by Primary Breast Tumors Stimulates Migration of Mesenchymal Stem Cells,” Clinical Cancer Research 13, no. 17 (2007): 5020–5027, https://doi.org/10.1158/1078‐0432.CCR‐07‐0731.
Y. Rattigan, J. M. Hsu, P. J. Mishra, J. Glod, and D. Banerjee, “Interleukin 6 Mediated Recruitment of Mesenchymal Stem Cells to the Hypoxic Tumor Milieu,” Experimental Cell Research 316, no. 20 (2010): 3417–3424, https://doi.org/10.1016/j.yexcr.2010.07.002.
D. Ryan, B. T. Paul, J. Koziol, and W. M. ElShamy, “The Pro‐ and Anti‐Tumor Roles of Mesenchymal Stem Cells Toward BRCA1‐IRIS‐Overexpressing TNBC Cells,” Breast Cancer Research 21, no. 1 (2019): 53, https://doi.org/10.1186/s13058‐019‐1131‐2.
A. E. Karnoub, A. B. Dash, A. P. Vo, et al., “Mesenchymal Stem Cells Within Tumour Stroma Promote Breast Cancer Metastasis,” Nature 449, no. 7162 (2007): 557–563, https://doi.org/10.1038/nature06188.
K. Sineh Sepehr, A. Razavi, Z. M. Hassan, et al., “Comparative Immunomodulatory Properties of Mesenchymal Stem Cells Derived From Human Breast Tumor and Normal Breast Adipose Tissue,” Cancer Immunology, Immunotherapy 69, no. 9 (2020): 1841–1854, https://doi.org/10.1007/s00262‐020‐02567‐y.
A. Maffey, C. Storini, C. Diceglie, et al., “Mesenchymal Stem Cells From Tumor Microenvironment Favour Breast Cancer Stem Cell Proliferation, Cancerogenic and Metastatic Potential, via Ionotropic Purinergic Signalling,” Scientific Reports 7, no. 1 (2017): 13162, https://doi.org/10.1038/s41598‐017‐13460‐7.
F. T. Martin, R. M. Dwyer, J. Kelly, et al., “Potential Role of Mesenchymal Stem Cells (MSCs) in the Breast Tumour Microenvironment: Stimulation of Epithelial to Mesenchymal Transition (EMT),” Breast Cancer Research and Treatment 124, no. 2 (2010): 317–326, https://doi.org/10.1007/s10549‐010‐0734‐1.
S. H. Kim, S. H. Bang, S. Y. Kang, et al., “Human Amniotic Membrane‐Derived Stromal Cells (hAMSC) Interact Depending on Breast Cancer Cell Type Through Secreted Molecules,” Tissue & Cell 47, no. 1 (2015): 10–16, https://doi.org/10.1016/j.tice.2014.10.003.
D. Hanahan and L. M. Coussens, “Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment,” Cancer Cell 21, no. 3 (2012): 309–322, https://doi.org/10.1016/j.ccr.2012.02.022.
M. Krol, K. M. Pawlowski, K. Szyszko, et al., “The Gene Expression Profiles of Canine Mammary Cancer Cells Grown With Carcinoma‐Associated Fibroblasts (CAFs) as a Co‐Culture in Vitro,” BMC Veterinary Research 8 (2012): 35, https://doi.org/10.1186/1746‐6148‐8‐35.
H. Yoshimura, R. Nakahira, T. E. Kishimoto, M. Michishita, K. Ohkusu‐Tsukada, and K. Takahashi, “Differences in Indicators of Malignancy Between Luminal Epithelial Cell Type and Myoepithelial Cell Type of Simple Solid Carcinoma in the Canine Mammary Gland,” Veterinary Pathology 51, no. 6 (2014): 1090–1095, https://doi.org/10.1177/0300985813516637.
P. Borecka, K. Ratajczak‐Wielgomas, R. Ciaputa, et al., “Expression of Periostin in Cancer‐Associated Fibroblasts in Mammary Cancer in Female Dogs,” In Vivo (Brooklyn) 34, no. 3 (2020): 1017–1026, https://doi.org/10.21873/invivo.11870.
P. V. Nuzzo, A. Rubagotti, L. Zinoli, S. Salvi, S. Boccardo, and F. Boccardo, “The Prognostic Value of Stromal and Epithelial Periostin Expression in Human Breast Cancer: Correlation With Clinical Pathological Features and Mortality Outcome,” BMC Cancer 16 (2016): 95, https://doi.org/10.1186/s12885‐016‐2139‐y.
B. Pula, A. Jethon, A. Piotrowska, et al., “Podoplanin Expression by Cancer‐Associated Fibroblasts Predicts Poor Outcome in Invasive Ductal Breast Carcinoma,” Histopathology 59, no. 6 (2011): 1249–1260, https://doi.org/10.1111/j.1365‐2559.2011.04060.x.
K. Ratajczak‐Wielgomas, J. Grzegrzolka, A. Piotrowska, A. Gomulkiewicz, W. Witkiewicz, and P. Dziegiel, “Periostin Expression in Cancer‐Associated Fibroblasts of Invasive Ductal Breast Carcinoma,” Oncology Reports 36, no. 5 (2016): 2745–2754, https://doi.org/10.3892/or.2016.5095.
T. Reya, S. J. Morrison, M. F. Clarke, and I. L. Weissman, “Stem Cells, Cancer, and Cancer Stem Cells,” Nature 414, no. 6859 (2001): 105–111, https://doi.org/10.1038/35102167.
Y. K. Im, R. La Selva, V. Gandin, et al., “The ShcA Adaptor Activates AKT Signaling to Potentiate Breast Tumor Angiogenesis by Stimulating VEGF mRNA Translation in a 4E‐BP‐Dependent Manner,” Oncogene 34, no. 13 (2015): 1729–1735, https://doi.org/10.1038/onc.2014.110.
J. Ettlin, E. Clementi, P. Amini, A. Malbon, and E. Markkanen, “Analysis of Gene Expression Signatures in Cancer‐Associated Stroma From Canine Mammary Tumours Reveals Molecular Homology to Human Breast Carcinomas,” International Journal of Molecular Sciences 18, no. 5 (2017): 1101, https://doi.org/10.3390/ijms18051101.
P. Amini, S. Nassiri, J. Ettlin, A. Malbon, and E. Markkanen, “Next‐Generation RNA Sequencing of FFPE Subsections Reveals Highly Conserved Stromal Reprogramming Between Canine and Human Mammary Carcinoma,” Disease Models & Mechanisms 12, no. 8 (2019): dmm040444, https://doi.org/10.1242/dmm.040444.
P. Amini, S. Nassiri, A. Malbon, et al. “Differential Stromal Reprogramming in Benign and Malignant Naturally Occurring Canine Mammary Tumours Identifies Disease—Promoting Stromal Components,” Scientific Reports 10 (2020): 5506, https://doi.org/10.1038/s41598‐020‐62354‐8.
J. Ettlin, A. Bauer, L. Opitz, A. Malbon, and E. Markkanen, “Deciphering Stromal Changes Between Metastatic and Non‐Metastatic Canine Mammary Carcinomas,” Journal of Mammary Gland Biology and Neoplasia 28, no. 1 (2023): 14, https://doi.org/10.1007/s10911‐023‐09542‐0.
Y. G. Cordeiro, L. M. Mulder, Z. R. J. M. Van, et al., “Proteomic Analysis Identifies FNDC1, A1BG, and Antigen Processing Proteins Associated With Tumor Heterogeneity and Malignancy in a Canine Model of Breast Cancer,” Cancers 13 (2021): 1–18.
P. Klose, C. Weise, A. Bondzio, et al., “Is There a Malignant Progression Associated With a Linear Change in Protein Expression Levels From Normal Canine Mammary Gland to Metastatic Mammary Tumors?” Journal of Proteome Research 10, no. 10 (2011): 4405–4415, https://doi.org/10.1021/pr200112q.
معلومات مُعتمدة: 406866/2022-8 Brazilian Research Council (CNPq); 312742/2022-3 Brazilian Research Council (CNPq)
فهرسة مساهمة: Keywords: breast cancer; mammary carcinomas; proteomics; stromal; transcriptomics; tumour cells
تواريخ الأحداث: Date Created: 20240716 Date Completed: 20240812 Latest Revision: 20240812
رمز التحديث: 20240813
DOI: 10.1111/vco.12996
PMID: 39011576
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-5829
DOI:10.1111/vco.12996