دورية أكاديمية

Myeloid-derived suppressor cells-induced exhaustion of CD8 + T-cell participates in rejection after liver transplantation.

التفاصيل البيبلوغرافية
العنوان: Myeloid-derived suppressor cells-induced exhaustion of CD8 + T-cell participates in rejection after liver transplantation.
المؤلفون: Zhou LX; Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.; State Key Lab of Digestive Health, Beijing, China., Jiang YZ; Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.; State Key Lab of Digestive Health, Beijing, China.; Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China., Li XQ; Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China., Zhang JM; Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.; State Key Lab of Digestive Health, Beijing, China., Li SP; Department of Hepatopancreaticobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China., Wei L; Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.; State Key Lab of Digestive Health, Beijing, China., Zhang HM; Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.; State Key Lab of Digestive Health, Beijing, China., Zhou GP; Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.; State Key Lab of Digestive Health, Beijing, China., Chen XJ; Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.; State Key Lab of Digestive Health, Beijing, China., Sun LY; Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.; State Key Lab of Digestive Health, Beijing, China.; Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China., Zhu ZJ; Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China. zhu-zhijun@outlook.com.; State Key Lab of Digestive Health, Beijing, China. zhu-zhijun@outlook.com.
المصدر: Cell death & disease [Cell Death Dis] 2024 Jul 16; Vol. 15 (7), pp. 507. Date of Electronic Publication: 2024 Jul 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101524092 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-4889 (Electronic) NLM ISO Abbreviation: Cell Death Dis Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Pub. Group
مواضيع طبية MeSH: CD8-Positive T-Lymphocytes*/immunology , CD8-Positive T-Lymphocytes*/metabolism , Myeloid-Derived Suppressor Cells*/metabolism , Myeloid-Derived Suppressor Cells*/immunology , Graft Rejection*/immunology , Liver Transplantation* , Mice, Inbred C57BL*, Animals ; Humans ; Mice ; Male ; Middle Aged ; Female ; Adult ; STAT3 Transcription Factor/metabolism ; Programmed Cell Death 1 Receptor/metabolism ; Liver/pathology ; Liver/metabolism
مستخلص: Liver transplantation (LT) rejection remains the most pervasive problem associated with this procedure, while the mechanism involved is still complicated and undefined. One promising solution may involve the use of myeloid-derived suppressor cells (MDSC). However, the immunological mechanisms underlying the effects of MDSC after LT remain unclear. This study is meant to clarify the role MDSCs play after liver transplantation. In this study, we collected liver tissue and peripheral blood mononuclear cells (PBMC) from LT patients showing varying degrees of rejection, as well as liver and spleen tissue samples from mice LT models. These samples were then analyzed using flow cytometry, immunohistochemistry and multiple immunofluorescence. M-MDSCs and CD8 + T-cells extracted from C57/BL6 mice were enriched and cocultured for in vitro experiments. Results, as obtained in both LT patients and LT mice model, revealed that the proportion and frequency of M-MDSC and PD-1 + T-cells increased significantly under conditions associated with a high degree of LT rejection. Within the LT rejection group, our immunofluorescence results showed that a close spatial contiguity was present between PD-1 + T-cells and M-MDSCs in these liver tissue samples and the proportion of CD84/PD-L1 double-positive M-MDSC was greater than that of G-MDSC. There was a positive correlation between the activity of CD84 and immunosuppressive function of M-MDSCs including PD-L1 expression and reactive oxygen species (ROS) production, as demonstrated in our in vitro model. M-MDSCs treated with CD84 protein were able to induce co-cultured CD8 + T-cells to express high levels of exhaustion markers. We found that CD84 regulated M-MDSC function via expression of PD-L1 through activation of the Akt/Stat3 pathway. These results suggest that the capacity for CD84 to regulate M-MDSC induction of CD8 + T-cell exhaustion may play a key role in LT rejection. Such findings provide important, new insights into the mechanisms of tolerance induction in LT.
(© 2024. The Author(s).)
References: Lake JR. Clinical frontiers in liver transplantation. Liver Transpl. 2014;20:S1–S1. (PMID: 2535493110.1002/lt.24025)
Butt Z, Parikh ND, Skaro AI, Ladner D, Cella D. Quality of life, risk assessment, and safety research in liver transplantation: new frontiers in health services and outcomes research. Curr Opin Organ Transpl. 2012;17:241–7. (PMID: 10.1097/MOT.0b013e32835365c6)
Lee-Riddle GS, Rocca JP. Low-dose aspirin, rejection, and thrombosis: is it the wonder drug® of liver transplantation? Liver Transpl Publ Am Assoc Study Liver Dis Int Liver Transpl Soc. 2022;28:1825–6.
Li X, Li S, Wu B, Xu Q, Teng D, Yang T, et al. Landscape of immune cells heterogeneity in liver transplantation by single-cell RNA sequencing analysis. Front Immunol. 2022;13:890019. (PMID: 35619708912708910.3389/fimmu.2022.890019)
Neil DAH, Hübscher SG. Current views on rejection pathology in liver transplantation. Transpl Int J Eur Soc Organ Transpl. 2010;23:971–83. (PMID: 10.1111/j.1432-2277.2010.01143.x)
Chandran S, Mannon RB. T cell-mediated rejection in kidney transplant recipients: the end(point) is also the beginning. Am J Transpl J Am Soc Transpl Am Soc Transpl Surg. 2022;22:683–4. (PMID: 10.1111/ajt.16964)
Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15:486–99. (PMID: 26205583488900910.1038/nri3862)
Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12:492–9. (PMID: 2173967210.1038/ni.2035)
van der Heide V, Humblin E, Vaidya A, Kamphorst AO. Advancing beyond the twists and turns of T cell exhaustion in cancer. Sci Transl Med. 2022;14:eabo4997. (PMID: 363509911000001610.1126/scitranslmed.abo4997)
Hegde S, Leader AM, Merad M. MDSC: Markers, development, states, and unaddressed complexity. Immunity. 2021;54:875–84. (PMID: 33979585870956010.1016/j.immuni.2021.04.004)
Colligan SH, Tzetzo SL, Abrams SI. Myeloid-driven mechanisms as barriers to antitumor CD8 + T cell activity. Mol Immunol. 2020;118:165–73. (PMID: 3188438810.1016/j.molimm.2019.12.012)
Schouppe E, Van Overmeire E, Laoui D, Keirsse J, Van Ginderachter JA. Modulation of CD8( + ) T-cell activation events by monocytic and granulocytic myeloid-derived suppressor cells. Immunobiology. 2013;218:1385–91. (PMID: 2393243610.1016/j.imbio.2013.07.003)
Pramanik A, Bhattacharyya S. Myeloid derived suppressor cells and innate immune system interaction in tumor microenvironment. Life Sci. 2022;305:120755. (PMID: 3578084210.1016/j.lfs.2022.120755)
Smith AD, Lu C, Payne D, Paschall AV, Klement JD, Redd PS, et al. Autocrine IL6-mediated activation of the STAT3-DNMT axis silences the TNFα-RIP1 necroptosis pathway to sustain survival and accumulation of myeloid-derived suppressor cells. Cancer Res. 2020;80:3145–56. (PMID: 32554751741644010.1158/0008-5472.CAN-19-3670)
Zhang K, Zakeri A, Alban T, Dong J, Ta HM, Zalavadia AH, et al. VISTA promotes the metabolism and differentiation of myeloid-derived suppressor cells by STAT3 and polyamine-dependent mechanisms. Cell Rep. 2024;43:113661. (PMID: 381757541085192810.1016/j.celrep.2023.113661)
Bitsch R, Kurzay A, Özbay Kurt F, De La Torre C, Lasser S, Lepper A, et al. STAT3 inhibitor Napabucasin abrogates MDSC immunosuppressive capacity and prolongs survival of melanoma-bearing mice. J Immunother Cancer. 2022;10:e004384. (PMID: 35301236893227610.1136/jitc-2021-004384)
Cole K, Al-Kadhimi Z, Talmadge JE. Role of myeloid-derived suppressor cells in tumor recurrence. Cancer Metastasis Rev. 2023;42:113–42. (PMID: 36640224984043310.1007/s10555-023-10079-1)
Cao P, Sun Z, Feng C, Zhang J, Zhang F, Wang W, et al. Myeloid-derived suppressor cells in transplantation tolerance induction. Int Immunopharmacol. 2020;83:106421. (PMID: 3221746210.1016/j.intimp.2020.106421)
Gong W, Shou D, Cheng F, Shi J, Ge F, Liu D. Tolerance induced by IL-6 deficient donor heart is significantly involved in myeloid-derived suppressor cells (MDSCs). Transpl Immunol. 2015;32:72–75. (PMID: 2568084710.1016/j.trim.2015.02.001)
Wei C, Sun Y, Zeng F, Chen X, Ma L, Liu X, et al. Exosomal miR-181d-5p derived from rapamycin-conditioned MDSC alleviated allograft rejection by targeting KLF6. Adv Sci Weinh Baden-Wurtt Ger. 2023;10:e2304922.
Cao P, Sun Z, Zhang F, Zhang J, Zheng X, Yu B, et al. TGF-β enhances immunosuppression of myeloid-derived suppressor cells to induce transplant immune tolerance through affecting Arg-1 expression. Front Immunol. 2022;13:919674. (PMID: 35874674930082210.3389/fimmu.2022.919674)
Yan Q, Malashkevich VN, Fedorov A, Fedorov E, Cao E, Lary JW, et al. Structure of CD84 provides insight into SLAM family function. Proc Natl Acad Sci USA. 2007;104:10583–8. (PMID: 17563375196555610.1073/pnas.0703893104)
Schuhmann MK, Stoll G, Bieber M, Vögtle T, Hofmann S, Klaus V, et al. CD84 links T cell and platelet activity in cerebral thrombo-inflammation in acute stroke. Circ Res. 2020;127:1023–35. (PMID: 32762491750829410.1161/CIRCRESAHA.120.316655)
Lewinsky H, Barak AF, Huber V, Kramer MP, Radomir L, Sever L, et al. CD84 regulates PD-1/PD-L1 expression and function in chronic lymphocytic leukemia. J Clin Invest. 2018;128:5465–78. (PMID: 30277471626473810.1172/JCI96610)
Arkhypov I, Özbay Kurt FG, Bitsch R, Novak D, Petrova V, Lasser S, et al. HSP90α induces immunosuppressive myeloid cells in melanoma via TLR4 signaling. J Immunother Cancer. 2022;10:e005551. (PMID: 36113897948638810.1136/jitc-2022-005551)
Cui C, Lan P, Fu L. The role of myeloid-derived suppressor cells in gastrointestinal cancer. Cancer Commun Lond Engl. 2021;41:442–71. (PMID: 10.1002/cac2.12156)
Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y, et al. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther. 2021;6:362. (PMID: 34620838849748510.1038/s41392-021-00670-9)
Jakoš T, Pišlar A, Pečar Fonović U, Švajger U, Kos J. Cysteine cathepsins L and X differentially modulate interactions between myeloid-derived suppressor cells and tumor cells. Cancer Immunol Immunother CII. 2020;69:1869–80. (PMID: 3237213910.1007/s00262-020-02592-x)
Iglesias-Escudero M, Segundo DS, Merino-Fernandez D, Mora-Cuesta VM, Lamadrid P, Alonso-Peña M, et al. Myeloid-derived suppressor cells are increased in lung transplant recipients and regulated by immunosuppressive therapy. Front Immunol. 2021;12:788851. (PMID: 3518586310.3389/fimmu.2021.788851)
Iglesias-Escudero M, Sansegundo-Arribas D, Riquelme P, Merino-Fernández D, Guiral-Foz S, Pérez C, et al. Myeloid-derived suppressor cells in kidney transplant recipients and the effect of maintenance immunotherapy. Front Immunol. 2020;11:643. (PMID: 32425928720349610.3389/fimmu.2020.00643)
Tian H-M, Fang M-H, Zou J, Su L. Shikonin impairs T lymphocyte proliferation and thymopoiesis while it may increase myeloid-derived suppressor cells to alleviate immune responses. Transpl Immunol. 2022;75:101699. (PMID: 3598889610.1016/j.trim.2022.101699)
Shi Z-Y, Yang C, Lu L-Y, Lin C-X, Liang S, Li G, et al. Inhibition of hexokinase 2 with 3-BrPA promotes MDSCs differentiation and immunosuppressive function. Cell Immunol. 2023;385:104688. (PMID: 3677467510.1016/j.cellimm.2023.104688)
Fujimoto K, Uchida K, Yin E, Zhu J, Kojima Y, Uchiyama M, et al. Analysis of therapeutic potential of monocytic myeloid-derived suppressor cells in cardiac allotransplantation. Transpl Immunol. 2021;67:101405. (PMID: 3397501210.1016/j.trim.2021.101405)
Zhao H, Teng D, Yang L, Xu X, Chen J, Jiang T, et al. Myeloid-derived itaconate suppresses cytotoxic CD8 + T cells and promotes tumour growth. Nat Metab. 2022;4:1660–73. (PMID: 363765631059336110.1038/s42255-022-00676-9)
Baumann T, Dunkel A, Schmid C, Schmitt S, Hiltensperger M, Lohr K, et al. Regulatory myeloid cells paralyze T cells through cell-cell transfer of the metabolite methylglyoxal. Nat Immunol. 2020;21:555–66. (PMID: 3232775610.1038/s41590-020-0666-9)
Kong X, Sun R, Chen Y, Wei H, Tian Z. γδT cells drive myeloid-derived suppressor cell-mediated CD8 + T cell exhaustion in hepatitis B virus-induced immunotolerance. J Immunol Balt Md 1950. 2014;193:1645–53.
Moiseev I, Tcvetkov N, Epifanovskaya O, Babenko E, Parfenenkova A, Bakin E, et al. Landscape of alterations in the checkpoint system in myelodysplastic syndrome and implications for prognosis. PloS One. 2022;17:e0275399. (PMID: 36282797959551610.1371/journal.pone.0275399)
Huang M, Wu R, Chen L, Peng Q, Li S, Zhang Y, et al. S100A9 regulates MDSCs-mediated immune suppression via the RAGE and TLR4 signaling pathways in colorectal carcinoma. Front Immunol. 2019;10:2243. (PMID: 31620141675948710.3389/fimmu.2019.02243)
Sade-Feldman M, Kanterman J, Ish-Shalom E, Elnekave M, Horwitz E, Baniyash M. Tumor necrosis factor-α blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Immunity. 2013;38:541–54. (PMID: 2347773610.1016/j.immuni.2013.02.007)
Zheng N, Fleming J, Hu P, Jiao J, Zhang G, Yang R, et al. CD84 is a suppressor of T and B cell activation during mycobacterium tuberculosis pathogenesis. Microbiol Spectr. 2022;10:e0155721. (PMID: 3519682210.1128/spectrum.01557-21)
Lewinsky H, Gunes EG, David K, Radomir L, Kramer MP, Pellegrino B, et al. CD84 is a regulator of the immunosuppressive microenvironment in multiple myeloma. JCI Insight. 2021;6:e141683. 141683. (PMID: 334650537934939)
Hashimoto M, Kamphorst AO, Im SJ, Kissick HT, Pillai RN, Ramalingam SS, et al. CD8 T cell exhaustion in chronic infection and cancer: opportunities for Interventions. Annu Rev Med. 2018;69:301–18. (PMID: 2941425910.1146/annurev-med-012017-043208)
Blake MK, O’Connell P, Aldhamen YA. Fundamentals to therapeutics: epigenetic modulation of CD8 + T Cell exhaustion in the tumor microenvironment. Front Cell Dev Biol. 2022;10:1082195. (PMID: 3668444910.3389/fcell.2022.1082195)
Buonocore G, Perrone S, Tataranno ML. Oxygen toxicity: chemistry and biology of reactive oxygen species. Semin Fetal Neonatal Med. 2010;15:186–90. (PMID: 2049463610.1016/j.siny.2010.04.003)
Ohl K, Tenbrock K. Reactive oxygen species as regulators of MDSC-mediated immune suppression. Front Immunol. 2018;9:2499. (PMID: 30425715621861310.3389/fimmu.2018.02499)
Cheng P, Eksioglu EA, Chen X, Kandell W, Le Trinh T, Cen L, et al. S100A9-induced overexpression of PD-1/PD-L1 contributes to ineffective hematopoiesis in myelodysplastic syndromes. Leukemia. 2019;33:2034–46. (PMID: 30737486668754010.1038/s41375-019-0397-9)
Sun Z, Jiang Q, Gao B, Zhang X, Bu L, Wang L, et al. AKT blocks SIK1-mediated repression of STAT3 to promote breast tumorigenesis. Cancer Res. 2023;83:1264–79. (PMID: 3680688710.1158/0008-5472.CAN-22-3407)
Liu Y-F, Zhuang K-H, Chen B, Li P-W, Zhou X, Jiang H, et al. Expansion and activation of monocytic-myeloid-derived suppressor cell via STAT3/arginase-I signaling in patients with ankylosing spondylitis. Arthritis Res Ther. 2018;20:168. (PMID: 30075733609107510.1186/s13075-018-1654-4)
Song TL, Nairismägi M-L, Laurensia Y, Lim J-Q, Tan J, Li Z-M, et al. Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood. 2018;132:1146–58. (PMID: 30054295614834310.1182/blood-2018-01-829424)
Sasidharan Nair V, Toor SM, Ali BR, Elkord E. Dual inhibition of STAT1 and STAT3 activation downregulates expression of PD-L1 in human breast cancer cells. Expert Opin Ther Targets. 2018;22:547–57. (PMID: 2970200710.1080/14728222.2018.1471137)
Watowich MB, Gilbert MR, Larion M. T cell exhaustion in malignant gliomas. Trends Cancer. 2023;9:270–92. (PMID: 366816051003890610.1016/j.trecan.2022.12.008)
Cai X, Zhan H, Ye Y, Yang J, Zhang M, Li J, et al. Current progress and future perspectives of immune checkpoint in cancer and infectious diseases. Front Genet. 2021;12:785153. (PMID: 34917131867022410.3389/fgene.2021.785153)
المشرفين على المادة: 0 (STAT3 Transcription Factor)
0 (Programmed Cell Death 1 Receptor)
تواريخ الأحداث: Date Created: 20240716 Date Completed: 20240716 Latest Revision: 20240716
رمز التحديث: 20240717
DOI: 10.1038/s41419-024-06834-z
PMID: 39013845
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-4889
DOI:10.1038/s41419-024-06834-z