دورية أكاديمية

The role of reactive oxygen species in plant-virus interactions.

التفاصيل البيبلوغرافية
العنوان: The role of reactive oxygen species in plant-virus interactions.
المؤلفون: Xu Y; School of Life Science, Liaocheng University, Liaocheng, 252000, China., Zhang S; School of Life Science, Liaocheng University, Liaocheng, 252000, China., Zhang M; School of Life Science, Liaocheng University, Liaocheng, 252000, China., Jiao S; School of Life Science, Liaocheng University, Liaocheng, 252000, China., Guo Y; A School of Pharmaceutical Science, Capital Medical University, Beijing, 100069, China., Jiang T; School of Life Science, Liaocheng University, Liaocheng, 252000, China. jiangtong@lcu.edu.cn.
المصدر: Plant cell reports [Plant Cell Rep] 2024 Jul 16; Vol. 43 (8), pp. 197. Date of Electronic Publication: 2024 Jul 16.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9880970 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-203X (Electronic) Linking ISSN: 07217714 NLM ISO Abbreviation: Plant Cell Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; New York : Springer, 1981-
مواضيع طبية MeSH: Reactive Oxygen Species*/metabolism , Plant Viruses*/physiology , Plant Viruses*/pathogenicity , Plant Diseases*/virology , Disease Resistance*/genetics , Plants*/virology , Plants*/metabolism, Host-Pathogen Interactions ; MicroRNAs/genetics ; MicroRNAs/metabolism ; Gene Expression Regulation, Plant
مستخلص: Reactive oxygen species (ROS) play a complex role in interactions between plant viruses and their host plants. They can both help the plant defend against viral infection and support viral infection and spread. This review explores the various roles of ROS in plant-virus interactions, focusing on their involvement in symptom development and the activation of plant defense mechanisms. The article discusses how ROS can directly inhibit viral infection, as well as how they can regulate antiviral mechanisms through various pathways involving miRNAs, virus-derived small interfering RNAs, viral proteins, and host proteins. Additionally, it examines how ROS can enhance plant resistance by interacting with hormonal pathways and external substances. The review also considers how ROS might promote viral infection and transmission, emphasizing their intricate role in plant-virus dynamics. These insights offer valuable guidance for future research, such as exploring the manipulation of ROS-related gene expression through genetic engineering, developing biopesticides, and adjusting environmental conditions to improve plant resistance to viruses. This framework can advance research in plant disease resistance, agricultural practices, and disease control.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Adamiec M, Gibasiewicz K, Lucinski R, Giera W, Chelminiak P, Szewczyk S et al (2015) Excitation energy transfer and charge separation are affected in arabidopsis thaliana mutants lacking light-harvesting chlorophyll a/b binding protein Lhcb3. J Photochem Photobiol B 153:423–428. https://doi.org/10.1016/j.jphotobiol.2015.11.002. (PMID: 10.1016/j.jphotobiol.2015.11.00226562806)
Ahmad P, Jaleel CA, Azooz M, Nabi G (2009) Generation of ROS and non-enzymatic antioxidants during abiotic stress in plants. Botany Res Int 2(1):11–20.
Ajjawi I, Tsegaye Y, Shintani D (2007) Determination of the genetic, molecular, and biochemical basis of the Arabidopsis thaliana thiamin auxotroph th1. Arch Biochem Biophys 459(1):107–114. https://doi.org/10.1016/j.abb.2006.11.011. (PMID: 10.1016/j.abb.2006.11.01117174261)
Alazem, M., and Burch‐Smith, T.M. (2024). Roles of ROS and redox in regulating cell‐to‐cell communication: Spotlight on viral modulation of redox for local spread. Plant, Cell Environment.
Alazem M, Lin NS (2015) Roles of plant hormones in the regulation of host-virus interactions. Mol Plant Pathol 16(5):529–540. https://doi.org/10.1111/mpp.12204. (PMID: 10.1111/mpp.1220425220680)
Al-Mokadem AZ, Alnaggar AE-AM, Mancy AG, Sofy AR, Sofy MR, Mohamed AKSH et al (2022) Foliar application of chitosan and phosphorus alleviate the potato virus Y-induced resistance by modulation of the reactive oxygen species antioxidant defense system activity and gene expression in potato. Agronomy. https://doi.org/10.3390/agronomy12123064. (PMID: 10.3390/agronomy12123064)
Arias MC, Luna C, Rodríguez M, Lenardon S, Taleisnik E (2005) Sunflower chlorotic mottle virus in compatible interactions with sunflower: ROS generation and antioxidant response. Eur J Plant Pathol 113:223–232. (PMID: 10.1007/s10658-005-7559-5)
Ashraf, M.A., Riaz, M., Arif, M.S., Rasheed, R., Iqbal, M., Hussain, I., et al. (2019). "The role of non-enzymatic antioxidants in improving abiotic stress tolerance in plants," in Plant tolerance to environmental stress. CRC Press), 129–144.
Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272(33):20313–20316. https://doi.org/10.1074/jbc.272.33.20313. (PMID: 10.1074/jbc.272.33.203139252331)
Boualem A, Dogimont C, Bendahmane A (2016) The battle for survival between viruses and their host plants. Curr Opin Virol 17:32–38. (PMID: 10.1016/j.coviro.2015.12.00126800310)
Cao D, Sun Y, Wang L, He Q, Zheng J, Deng F et al (2015) Alpha-momorcharin (alpha-MMC) exerts effective anti-human breast tumor activities but has a narrow therapeutic window in vivo. Fitoterapia 100:139–149. https://doi.org/10.1016/j.fitote.2014.11.009. (PMID: 10.1016/j.fitote.2014.11.00925447153)
Castro JC, Castro CG, Cobos M (2023) Genetic and biochemical strategies for regulation of L-ascorbic acid biosynthesis in plants through the L-galactose pathway. Front Plant Sci 14:1099829. https://doi.org/10.3389/fpls.2023.1099829. (PMID: 10.3389/fpls.2023.10998293702131010069634)
Clarke SF, Guy PL, Burritt DJ, Jameson PE (2002) Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiol Plant 114(2):157–164. (PMID: 10.1034/j.1399-3054.2002.1140201.x11903962)
Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53. (PMID: 10.3389/fenvs.2014.00053)
Das AB, Sadowska-Bartosz I, Konigstorfer A, Kettle AJ, Winterbourn CC (2018) Superoxide dismutase protects ribonucleotide reductase from inactivation in yeast. Free Radic Biol Med 116:114–122. https://doi.org/10.1016/j.freeradbiomed.2018.01.001. (PMID: 10.1016/j.freeradbiomed.2018.01.00129305896)
Deng XG, Zhu T, Zou LJ, Han XY, Zhou X, Xi DH et al (2016) Orchestration of hydrogen peroxide and nitric oxide in brassinosteroid-mediated systemic virus resistance in Nicotiana benthamiana. Plant J 85(4):478–493. https://doi.org/10.1111/tpj.13120. (PMID: 10.1111/tpj.1312026749255)
Ding LN, Li YT, Wu YZ, Li T, Geng R, Cao J et al (2022) Plant disease resistance-related signaling pathways: recent progress and future prospects. Int J Mol Sci. https://doi.org/10.3390/ijms232416200. (PMID: 10.3390/ijms232416200366141459820211)
Doke N, Ohashi Y (1988) Involvement of an O-2-generating system in the induction of necrotic lesions on tobacco-leaves Infected with tobacco mosaic-virus. Physiol Mol Plant Pathol 32(1):163–175. https://doi.org/10.1016/s0885-5765(88)80013-4. (PMID: 10.1016/s0885-5765(88)80013-4)
Elmoshaty FIB, Pike SM, Novacky AJ, Sehgal OP (1993) lipid-peroxidation and superoxide production in cowpea (vigna-unguiculata) leaves infected with tobacco ringspot Virus Or Southern bean mosaic-virus. Physiol Mol Plant Pathol 43(2):109–119. https://doi.org/10.1006/pmpp.1993.1044. (PMID: 10.1006/pmpp.1993.1044)
Elnahal AS, El-Saadony MT, Saad AM, Desoky E-SM, El-Tahan AM, Rady MM et al (2022) The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: a review. Eur J Plant Pathol 162(4):759–792. (PMID: 10.1007/s10658-021-02393-7)
Gullberg RC, Jordan Steel J, Moon SL, Soltani E, Geiss BJ (2015) Oxidative stress influences positive strand RNA virus genome synthesis and capping. Virology 475:219–229. https://doi.org/10.1016/j.virol.2014.10.037. (PMID: 10.1016/j.virol.2014.10.03725514423)
Guo H, Gu L, Liu F, Chen F, Ge F, Sun Y (2019) Aphid-borne viral spread Is enhanced by virus-induced accumulation of plant reactive oxygen species. Plant Physiol 179(1):143–155. https://doi.org/10.1104/pp.18.00437. (PMID: 10.1104/pp.18.0043730381318)
Guo H, Bi X, Wang Z, Jiang D, Cai M, An M et al (2022) Reactive oxygen species-related genes participate in resistance to cucumber green mottle mosaic virus infection regulated by boron in nicotiana benthamiana and watermelon. Front Plant Sci 13:1027404. https://doi.org/10.3389/fpls.2022.1027404. (PMID: 10.3389/fpls.2022.1027404364381469691971)
Hanke G, Mulo P (2013) Plant type ferredoxins and ferredoxin-dependent metabolism. Plant Cell Environ 36(6):1071–1084. https://doi.org/10.1111/pce.12046. (PMID: 10.1111/pce.1204623190083)
Hernández JA, Rubio M, Olmos E, Ros-Barceló A, Martínez-Gómez P (2004) Oxidative stress induced by long-term plum pox virus infection in peach (Prunus persica L. cv GF305). Physiol Plant 122(4):486–495. https://doi.org/10.1111/j.1399-3054.2004.00431.x. (PMID: 10.1111/j.1399-3054.2004.00431.x)
Hernández JA, Gullner G, Clemente-Moreno MJ, Künstler A, Juhász C, Díaz-Vivancos P et al (2016) Oxidative stress and antioxidative responses in plant–virus interactions. Physiol Mol Plant Pathol 94:134–148. https://doi.org/10.1016/j.pmpp.2015.09.001. (PMID: 10.1016/j.pmpp.2015.09.001)
Holtgrefe S, Bader KP, Horton P, Scheibe R, von Schaewen A, Backhausen JE (2003) Decreased content of leaf ferredoxin changes electron distribution and limits photosynthesis in transgenic potato plants. Plant Physiol 133(4):1768–1778. https://doi.org/10.1104/pp.103.026013. (PMID: 10.1104/pp.103.02601314645726300731)
Hyodo K, Hashimoto K, Kuchitsu K, Suzuki N, Okuno T (2017) Harnessing host ROS-generating machinery for the robust genome replication of a plant RNA virus. Proc Natl Acad Sci USA 114(7):E1282–E1290. https://doi.org/10.1073/pnas.1610212114. (PMID: 10.1073/pnas.1610212114281541395320965)
Inaba J-I, Kim BM, Shimura H, Masuta C (2011) Virus-induced necrosis Is a consequence of direct protein-protein interaction between a Viral RNA-silencing suppressor and a host catalase. Plant Physiol 156(4):2026–2036. https://doi.org/10.1104/pp.111.180042. (PMID: 10.1104/pp.111.180042216228123149961)
Jiang T, Du K, Xie J, Sun G, Wang P, Chen X et al (2023) Activated malate circulation contributes to the manifestation of light-dependent mosaic symptoms. Cell Rep 42(4):112333. https://doi.org/10.1016/j.celrep.2023.112333. (PMID: 10.1016/j.celrep.2023.11233337018076)
Király L, Hafez YM, Fodor J, Király Z (2008) Suppression of tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. J Gen Virol 89:799–808. https://doi.org/10.1099/vir.0.83328-0. (PMID: 10.1099/vir.0.83328-018272772)
Kitab B, Satoh M, Ohmori Y, Munakata T, Sudoh M, Kohara M et al (2019) Ribonucleotide reductase M2 promotes RNA replication of hepatitis C virus by protecting NS5B protein from hPLIC1-dependent proteasomal degradation. J Biol Chem 294(15):5759–5773. https://doi.org/10.1074/jbc.RA118.004397. (PMID: 10.1074/jbc.RA118.004397307554806463693)
Laing WA, Wright MA, Cooney J, Bulley SM (2007) The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proc Natl Acad Sci USA 104(22):9534–9539. https://doi.org/10.1073/pnas.0701625104. (PMID: 10.1073/pnas.0701625104174856671866185)
Lamalakshmi Devi E, Kumar S, Basanta Singh T, Sharma SK, Beemrote A, Devi CP et al (2017) Adaptation strategies and defence mechanisms of plants during environmental stress. Med Plants Environmental Challenges. https://doi.org/10.1007/978-3-319-68717-9_20. (PMID: 10.1007/978-3-319-68717-9_20)
Lei R, Du Z, Qiu Y, Zhu S (2016) The detection of hydrogen peroxide involved in plant virus infection by fluorescence spectroscopy. Luminescence 31(5):1158–1165. https://doi.org/10.1002/bio.3090. (PMID: 10.1002/bio.309027373455)
Lewis DH (2019) Boron: the essential element for vascular plants that never was. New Phytol 221(4):1685–1690. https://doi.org/10.1111/nph.15519. (PMID: 10.1111/nph.1551930289999)
Li Z, Burritt DJ (2003) The influence of cocksfoot mottle virus on antioxidant metabolism in the leaves of dactylis glomerata L. Physiol Mol Plant Pathol 62(5):285–295. https://doi.org/10.1016/s0885-5765(03)00075-4. (PMID: 10.1016/s0885-5765(03)00075-4)
Li Y, Li Q, Hong Q, Lin Y, Mao W, Zhou S (2018) Reactive oxygen species triggering systemic programmed cell death process via elevation of nuclear calcium ion level in tomatoes resisting tobacco mosaic virus. Plant Sci 270:166–175. https://doi.org/10.1016/j.plantsci.2018.02.010. (PMID: 10.1016/j.plantsci.2018.02.01029576070)
Li T, Huang Y, Xu ZS, Wang F, Xiong AS (2019) Salicylic acid-induced differential resistance to the tomato yellow leaf curl virus among resistant and susceptible tomato cultivars. BMC Plant Biol 19(1):173. https://doi.org/10.1186/s12870-019-1784-0. (PMID: 10.1186/s12870-019-1784-0310466676498608)
Lin KY, Wu SY, Hsu YH, Lin NS (2021) MiR398-regulated antioxidants contribute to bamboo mosaic virus accumulation and symptom manifestation. Plant Physiol 188(1):593–607. https://doi.org/10.1093/plphys/kiab451. (PMID: 10.1093/plphys/kiab4519040666)
Liu P, Zhang X, Zhang F, Xu M, Ye Z, Wang K et al (2021) A virus-derived siRNA activates plant immunity by interfering with ROS scavenging. Mol Plant 14(7):1088–1103. https://doi.org/10.1016/j.molp.2021.03.022. (PMID: 10.1016/j.molp.2021.03.02233798746)
Liu X, Liu S, Chen X, Prasanna BM, Ni Z, Li X et al (2022) Maize miR167-ARF3/30-polyamine oxidase 1 module-regulated H 2 O 2 production confers resistance to maize chlorotic mottle virus. Plant Physiol 189(2):1065–1082. https://doi.org/10.1093/plphys/kiac099. (PMID: 10.1093/plphys/kiac099352986459157100)
Manacorda CA, Mansilla C, Debat HJ, Zavallo D, Sanchez F, Ponz F et al (2013) Salicylic acid determines differential senescence produced by two Turnip mosaic virus strains involving reactive oxygen species and early transcriptomic changes. Mol Plant Microbe Interact 26(12):1486–1498. https://doi.org/10.1094/MPMI-07-13-0190-R. (PMID: 10.1094/MPMI-07-13-0190-R23945002)
Manjunatha L, Rajashekara H, Uppala LS, Ambika DS, Patil B, Shankarappa KS et al (2022) Mechanisms of microbial plant protection and control of plant viruses. Plants 11(24):3449. (PMID: 10.3390/plants11243449365595589785281)
Mejía-Teniente L, Durán-Flores BA, Torres-Pacheco I, González-Chavira MM, Rivera-Bustamante RF, Feregrino-Perez AA et al (2019) Hydrogen peroxide protects pepper (Capsicum annuum L.) against pepper golden mosaic geminivirus (PepGMV) infections. Physiol Mol Plant Pathol 106:23–29. https://doi.org/10.1016/j.pmpp.2018.11.008. (PMID: 10.1016/j.pmpp.2018.11.008)
Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F (2022) Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol 23(10):663–679. https://doi.org/10.1038/s41580-022-00499-2. (PMID: 10.1038/s41580-022-00499-235760900)
Moeder W, Yoshioka K, Klessig DF (2005) Involvement of the small GTPase Rac in the defense responses of tobacco to pathogens. Mol Plant Microbe Interact 18(2):116–124. https://doi.org/10.1094/mpmi-18-0116. (PMID: 10.1094/mpmi-18-011615720080)
Montalbini P (1991) Enhanced uricase activity in tobacco mosaic-virus-infected tobacco-leaves. Plant Sci 74(2):261–265. https://doi.org/10.1016/0168-9452(91)90055-d. (PMID: 10.1016/0168-9452(91)90055-d)
Montillet JL, Chamnongpol S, Rusterucci C, Dat J, van de Cotte B, Agnel JP et al (2005) Fatty acid hydroperoxides and H 2 O 2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol 138(3):1516–1526. https://doi.org/10.1104/pp.105.059907. (PMID: 10.1104/pp.105.059907159802001176422)
Pacheco R, García-Marcos A, Manzano A, de Lacoba MG, Camañes G, García-Agustín P et al (2012) Comparative analysis of transcriptomic and hormonal responses to compatible and incompatible plant-virus interactions that lead to cell death. Mol Plant Microbe Interact 25:709–723. (PMID: 10.1094/MPMI-11-11-030522273391)
Pan R, Liu J, Wang S, Hu J (2020) Peroxisomes: versatile organelles with diverse roles in plants. New Phytol 225(4):1410–1427. https://doi.org/10.1111/nph.16134. (PMID: 10.1111/nph.1613431442305)
Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69. (PMID: 10.3389/fpls.2015.00069257413544332301)
Piau M, Schmitt-Keichinger C (2023) The Hypersensitive Response to Plant Viruses. Viruses. https://doi.org/10.3390/v15102000. (PMID: 10.3390/v151020003789677710612061)
Qiu Y, Zhang Y, Wang C, Lei R, Wu Y, Li X et al (2018) Cucumber mosaic virus coat protein induces the development of chlorotic symptoms through interacting with the chloroplast ferredoxin I protein. Sci Rep 8(1):1205. https://doi.org/10.1038/s41598-018-19525-5. (PMID: 10.1038/s41598-018-19525-5293522135775247)
Qiu S, Chen X, Zhai Y, Cui W, Ai X, Rao S et al (2021) Downregulation of light-harvesting complex II induces ROS-mediated defense against turnip mosaic virus infection in Nicotiana benthamiana. Front Microbiol 12:690988. https://doi.org/10.3389/fmicb.2021.690988. (PMID: 10.3389/fmicb.2021.690988342906858287655)
Rahoutei J, García-Luque I, Barón M (2000) Inhibition of photosynthesis by viral infection: effect on PSII structure and function. Physiol Plant 110:286–292. (PMID: 10.1034/j.1399-3054.2000.110220.x)
Riedle-Bauer M (2000) Role of reactive oxygen species and antioxidant enzymes in systemic virus Infections of plants. J Phytopathol 148(5):297–302. https://doi.org/10.1046/j.1439-0434.2000.00503.x. (PMID: 10.1046/j.1439-0434.2000.00503.x)
Rossetti S, Bonatti PM (2001) In situ histochemical monitoring of ozone- and TMV-induced reactive oxygen species in tobacco leaves. Plant Physiol Biochem 39:433–442. https://doi.org/10.1016/S0981-9428(01)01250-5. (PMID: 10.1016/S0981-9428(01)01250-5)
Sacharz J, Giovagnetti V, Ungerer P, Mastroianni G, Ruban AV (2017) The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching. Nat Plants 3:16225. https://doi.org/10.1038/nplants.2016.225. (PMID: 10.1038/nplants.2016.22528134919)
Shang J, Xi D-H, Yuan S, Xu F, Xu M-Y, Qi H-L et al (2010) Difference of physiological characters in dark green islands and yellow leaf tissue of cucumber mosaic virus (CMV)-infected Nicotiana tabacum leaves. Zeitschrift Für Naturforschung C 65(1–2):73–78. (PMID: 10.1515/znc-2010-1-213)
Sharma R, Verma S (2019) Environment-pathogen interaction in plant diseases. Agric Rev 40(3):192–199.
Sies H, Jones DP (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21(7):363–383. https://doi.org/10.1038/s41580-020-0230-3. (PMID: 10.1038/s41580-020-0230-332231263)
Smirnoff N, Arnaud D (2019) Hydrogen peroxide metabolism and functions in plants. New Phytol 221(3):1197–1214. https://doi.org/10.1111/nph.15488. (PMID: 10.1111/nph.1548830222198)
Sofy AR, Dawoud RA, Sofy MR, Mohamed HI, Hmed AA, El-Dougdoug NK (2020) Improving regulation of enzymatic and non-enzymatic antioxidants and stress-related gene stimulation in cucumber mosaic cucumovirus-infected cucumber plants treated with glycine betaine, chitosan and combination. Molecules. https://doi.org/10.3390/molecules25102341. (PMID: 10.3390/molecules25102341324295247288169)
Song XS, Wang YJ, Mao WH, Shi K, Zhou YH, Nogues S et al (2009) Effects of cucumber mosaic virus infection on electron transport and antioxidant system in chloroplasts and mitochondria of cucumber and tomato leaves. Physiol Plant 135(3):246–257. https://doi.org/10.1111/j.1399-3054.2008.01189.x. (PMID: 10.1111/j.1399-3054.2008.01189.x19140890)
Song X, Li Y, Cao X, Qi Y (2019) MicroRNAs and Their Regulatory Roles in Plant-Environment Interactions. Annu Rev Plant Biol 70:489–525. https://doi.org/10.1146/annurev-arplant-050718-100334. (PMID: 10.1146/annurev-arplant-050718-10033430848930)
Sun YD, Folimonova SY (2019) The p33 protein of citrus tristeza virus affects viral pathogenicity by modulating a host immune response. New Phytol 221(4):2039–2053. https://doi.org/10.1111/nph.15482. (PMID: 10.1111/nph.1548230220089)
Tibiletti T, Auroy P, Peltier G, Caffarri S (2016) Chlamydomonas reinhardtii PsbS protein Is functional and accumulates rapidly and transiently under high light. Plant Physiol 171(4):2717–2730. https://doi.org/10.1104/pp.16.00572. (PMID: 10.1104/pp.16.00572273292214972282)
Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141(2):384–390. https://doi.org/10.1104/pp.106.078295. (PMID: 10.1104/pp.106.078295167604921475453)
Wang X, Jiang Z, Yue N, Jin X, Zhang X, Li Z et al (2021) Barley stripe mosaic virus γb protein disrupts chloroplast antioxidant defenses to optimize viral replication. EMBO J 40:e107660. https://doi.org/10.15252/embj.2021107660. (PMID: 10.15252/embj.2021107660342546798365260)
Waszczak C, Carmody M, Kangasjarvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69:209–236. https://doi.org/10.1146/annurev-arplant-042817-040322. (PMID: 10.1146/annurev-arplant-042817-04032229489394)
Wu J, Yang R, Yang Z, Yao S, Zhao S, Wang Y et al (2017) ROS accumulation and antiviral defence control by microRNA528 in rice. Nat Plants 3:16203. https://doi.org/10.1038/nplants.2016.203. (PMID: 10.1038/nplants.2016.20328059073)
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T et al (2023) Plant virology in the 21st century in China: recent advances and future directions. J Integr Plant Biol. https://doi.org/10.1111/jipb.13580. (PMID: 10.1111/jipb.1358037929676)
Xie K, Li L, Zhang H, Wang R, Tan X, He Y et al (2018) Abscisic acid negatively modulates plant defence against rice black-streaked dwarf virus infection by suppressing the jasmonate pathway and regulating reactive oxygen species levels in rice. Plant Cell Environ 41(10):2504–2514. https://doi.org/10.1111/pce.13372. (PMID: 10.1111/pce.1337229920686)
Xu YH, Liu R, Yan L, Liu ZQ, Jiang SC, Shen YY et al (2012) Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in arabidopsis. J Exp Bot 63(3):1095–1106. https://doi.org/10.1093/jxb/err315. (PMID: 10.1093/jxb/err31522143917)
Yang M, Li Z, Zhang K, Zhang X, Zhang Y, Wang X et al (2018) Barley stripe mosaic virus gammab interacts with glycolate oxidase and inhibits peroxisomal ROS production to facilitate virus infection. Mol Plant 11(2):338–341. https://doi.org/10.1016/j.molp.2017.10.007. (PMID: 10.1016/j.molp.2017.10.00729066357)
Yang X, Li Y, Wang A (2021) Research advances in potyviruses: from the laboratory bench to the field. Annu Rev Phytopathol. https://doi.org/10.1146/annurev-phyto-020620-114550. (PMID: 10.1146/annurev-phyto-020620-11455033891829)
Yang D, Peng Q, Cheng Y, Xi D (2022) Glucose-6-phosphate dehydrogenase promotes the infection of Chilli veinal mottle virus through affecting ROS signaling in Nicotiana benthamiana. Planta 256(5):96. https://doi.org/10.1007/s00425-022-04010-1. (PMID: 10.1007/s00425-022-04010-136217064)
Yang J, Chen L, Zhang J, Liu P, Chen M, Chen Z et al (2023) TaTHI2 interacts with Ca(2+)-dependent protein kinase TaCPK5 to suppress virus infection by regulating ROS accumulation. Plant Biotechnol J. https://doi.org/10.1111/pbi.14270. (PMID: 10.1111/pbi.142703810026211022809)
Yoda H, Yamaguchi Y, Sano H (2003) Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiol 132(4):1973–1981. https://doi.org/10.1104/pp.103.024737. (PMID: 10.1104/pp.103.02473712913153181282)
Zhang C, Wu Z, Li Y, Wu J (2015) Biogenesis, function, and applications of Virus-derived small RNAs in plants. Front Microbiol 6:1237. https://doi.org/10.3389/fmicb.2015.01237. (PMID: 10.3389/fmicb.2015.01237266175804637412)
Zhang T, Hu H, Wang Z, Feng T, Yu L, Zhang J et al (2023) Wheat yellow mosaic virus NIb targets TaVTC2 to elicit broad-spectrum pathogen resistance in wheat. Plant Biotechnol J 21(5):1073–1088. https://doi.org/10.1111/pbi.14019. (PMID: 10.1111/pbi.140193671522910106851)
Zhao S, Li Y (2021) Current understanding of the interplays between host hormones and plant viral infections. PLoS Pathog 17(2):e1009242. https://doi.org/10.1371/journal.ppat.1009242. (PMID: 10.1371/journal.ppat.1009242336309707906326)
Zhou S, Hong Q, Li Y, Li Q, Wang M (2018) Autophagy contributes to regulate the ROS levels and PCD progress in TMV-infected tomatoes. Plant Sci 269:12–19. https://doi.org/10.1016/j.plantsci.2017.11.002. (PMID: 10.1016/j.plantsci.2017.11.00229606209)
Zhu H, Guo H (2012) The role of virus-derived small interfering RNAs in RNA silencing in plants. Sci China Life Sci 55(2):119–125. https://doi.org/10.1007/s11427-012-4281-3. (PMID: 10.1007/s11427-012-4281-322415682)
Zhu F, Zhu PX, Xu F, Che YP, Ma YM, Ji ZL (2020) Alpha-momorcharin enhances Nicotiana benthamiana resistance to tobacco mosaic virus infection through modulation of reactive oxygen species. Mol Plant Pathol 21(9):1212–1226. https://doi.org/10.1111/mpp.12974. (PMID: 10.1111/mpp.12974327131657411664)
معلومات مُعتمدة: 20230928 Doctoral Research Initiation Fund of Liaocheng University
فهرسة مساهمة: Keywords: Defense mechanisms; Plant virus; Plant-virus interaction; Reactive oxygen species; Viral symptoms
المشرفين على المادة: 0 (Reactive Oxygen Species)
0 (MicroRNAs)
تواريخ الأحداث: Date Created: 20240716 Date Completed: 20240716 Latest Revision: 20240815
رمز التحديث: 20240816
DOI: 10.1007/s00299-024-03280-1
PMID: 39014054
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-203X
DOI:10.1007/s00299-024-03280-1