دورية أكاديمية

Sunlight-powered sustained flight of an ultralight micro aerial vehicle.

التفاصيل البيبلوغرافية
العنوان: Sunlight-powered sustained flight of an ultralight micro aerial vehicle.
المؤلفون: Shen W; School of Energy and Power Engineering, Beihang University, Beijing, China., Peng J; School of Energy and Power Engineering, Beihang University, Beijing, China., Ma R; School of Energy and Power Engineering, Beihang University, Beijing, China., Wu J; School of Energy and Power Engineering, Beihang University, Beijing, China., Li J; School of Energy and Power Engineering, Beihang University, Beijing, China., Liu Z; School of Energy and Power Engineering, Beihang University, Beijing, China.; Collaborative Innovation Center of Advanced Aero-Engine, Beijing, China.; National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beijing, China.; Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing, China., Leng J; Collaborative Innovation Center of Advanced Aero-Engine, Beijing, China., Yan X; School of Energy and Power Engineering, Beihang University, Beijing, China. yanxiaojun@buaa.edu.cn.; Collaborative Innovation Center of Advanced Aero-Engine, Beijing, China. yanxiaojun@buaa.edu.cn.; National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beijing, China. yanxiaojun@buaa.edu.cn.; Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing, China. yanxiaojun@buaa.edu.cn., Qi M; School of Energy and Power Engineering, Beihang University, Beijing, China. qimingjing@buaa.edu.cn.; Collaborative Innovation Center of Advanced Aero-Engine, Beijing, China. qimingjing@buaa.edu.cn.; National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beijing, China. qimingjing@buaa.edu.cn.; Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing, China. qimingjing@buaa.edu.cn.
المصدر: Nature [Nature] 2024 Jul; Vol. 631 (8021), pp. 537-543. Date of Electronic Publication: 2024 Jul 17.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Sunlight* , Aircraft*/instrumentation, Animals ; Time Factors ; Equipment Design
مستخلص: Limited flight duration is a considerable obstacle to the widespread application of micro aerial vehicles (MAVs) 1-3 , especially for ultralightweight MAVs weighing less than 10 g, which, in general, have a flight endurance of no more than 10 min (refs. 1,4 ). Sunlight power 5-7 is a potential alternative to improve the endurance of ultralight MAVs, but owing to the restricted payload capacity of the vehicle and low lift-to-power efficiency of traditional propulsion systems, previous studies have not achieved untethered sustained flight of MAVs fully powered by natural sunlight 8,9 . Here, to address these challenges, we introduce the CoulombFly, an electrostatic flyer consisting of an electrostatic-driven propulsion system with a high lift-to-power efficiency of 30.7 g W - 1 and an ultralight kilovolt power system with a low power consumption of 0.568 W, to realize solar-powered sustained flight of an MAV under natural sunlight conditions (920 W m - 2 ). The vehicle's total mass is only 4.21 g, within 1/600 of the existing lightest sunlight-powered aerial vehicle 6 .
(© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Floreano, D. & Wood, R. J. Science, technology and the future of small autonomous drones. Nature 521, 460–466 (2015). (PMID: 10.1038/nature1454226017445)
Phan, H. V. & Park, H. C. Insect-inspired, tailless, hover-capable flapping-wing robots: recent progress, challenges, and future directions. Prog. Aerosp. Sci. 111, 100573 (2019). (PMID: 10.1016/j.paerosci.2019.100573)
Farrell Helbling, E. & Wood, R. J. A review of propulsion, power, and control architectures for insect-scale flapping-wing vehicles. Appl. Mech. Rev. 70, 010801 (2018). (PMID: 10.1115/1.4038795)
Yan, M. & Ebel, T. in Titanium for Consumer Applications (eds Froes, F. et al.) 91–113 (Elsevier, 2019).
Zhu, X., Guo, Z. & Hou, Z. Solar-powered airplanes: a historical perspective and future challenges. Prog. Aerosp. Sci. 71, 36–53 (2014). (PMID: 10.1016/j.paerosci.2014.06.003)
Goh, C. S., Kuan, J. R., Yeo, J. H., Teo, B. S. & Danner, A. A fully solar-powered quadcopter able to achieve controlled flight out of the ground effect. Prog. Photovolt. 27, 869–878 (2019). (PMID: 10.1002/pip.3169)
Boucher, R. J. Sunrise, the world’s first solar-powered airplane. J. Aircr. 22, 840–846 (1985). (PMID: 10.2514/3.45213)
Jafferis, N. T., Helbling, E. F., Karpelson, M. & Wood, R. J. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature 570, 491–495 (2019). (PMID: 10.1038/s41586-019-1322-031243384)
Kaltenbrunner, M. et al. Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015). (PMID: 10.1038/nmat438826301766)
Alvissalim, M. S. et al. Swarm quadrotor robots for telecommunication network coverage area expansion in disaster area. In Annual Conference of the Society of Instrument and Control Engineers (SICE) 2256–2261 (IEEE, 2012).
Bi, Y. C., Lan, M. L., Li, J. X., Lai, S. P. & Chen, B. A lightweight autonomous MAV for indoor search and rescue. Asian J. Control 21, 1732–1744 (2019). (PMID: 10.1002/asjc.2162)
Gerdes, J. W., Gupta, S. K. & Wilkerson, S. A. A review of bird-inspired flapping wing miniature air vehicle designs. J. Mech. Robot. https://doi.org/10.1115/1.4005525 (2012).
De Croon, G., De Clercq, K., Ruijsink, R., Remes, B. & De Wagter, C. Design, aerodynamics, and vision-based control of the DelFly. Int. J. Micro Air Veh. 1, 71–97 (2009). (PMID: 10.1260/175682909789498288)
Steltz, E., Seeman, M., Avadhanula, S. & Fearing, R. S. Power electronics design choice for piezoelectric microrobots. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems 1322–1328 (IEEE, 2007).
Wood, R. J. The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Rob. 24, 341–347 (2008). (PMID: 10.1109/TRO.2008.916997)
Graule, M. A. et al. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion. Science 352, 978–982 (2016). (PMID: 10.1126/science.aaf109227199427)
Chen, Y. F. et al. Controlled flight of a microrobot powered by soft artificial muscles. Nature 575, 324–329 (2019). (PMID: 10.1038/s41586-019-1737-731686057)
Kim, S. et al. Laser-assisted failure recovery for dielectric elastomer actuators in aerial robots. Sci. Robot. 8, eadf4278 (2023). (PMID: 10.1126/scirobotics.adf427836921017)
Liu, Z., Yan, X., Qi, M., Zhang, X. & Lin, L. Low-voltage electromagnetic actuators for flapping-wing micro aerial vehicles. Sens. Actuators A 265, 1–9 (2017). (PMID: 10.1016/j.sna.2017.08.027)
Zou, Y., Zhang, W. & Zhang, Z. Liftoff of an electromagnetically driven insect-inspired flapping-wing robot. IEEE Trans. Rob. 32, 1285–1289 (2016). (PMID: 10.1109/TRO.2016.2593449)
James, J., Iyer, V., Chukewad, Y., Gollakota, S. & Fuller, S. B. Liftoff of a 190 mg laser-powered aerial vehicle: the lightest wireless robot to fly. In 2018 IEEE International Conference on Robotics and Automation (ICRA) 3587–3594 (IEEE, 2018).
Ozaki, T., Ohta, N., Jimbo, T. & Hamaguchi, K. A wireless radiofrequency-powered insect-scale flapping-wing aerial vehicle. Nat. Electron. 4, 845–852 (2021). (PMID: 10.1038/s41928-021-00669-8)
Elkunchwar, N., Chandrasekaran, S., Iyer, V. & Fuller, S. B. Toward battery-free flight: duty cycled recharging of small drones. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 5234–5241 (IEEE, 2021).
Jefimenko, O. Electrostatic Motors: Their History, Types and Principles of Operation (Integrity Research Institute, 2010).
Ludois, D. C. et al. Macroscale electrostatic rotating machines and drives: a review and multiplicative gain performance strategy. IEEE J. Emerging Sel. Top. Power Electron. 10, 14–34 (2020).
Fan, L. S., Tai, Y. C. & Muller, R. S. IC-processed electrostatic micro-motors. Tech. Digest International Electron Devices Meeting 666–669 (IEEE, 1988).
Livermore, C. et al. A high-power MEMS electric induction motor. J. Microelectromech. Syst. 13, 465–471 (2004). (PMID: 10.1109/JMEMS.2004.828736)
Yasseen, A. A., Mitchell, J. N., Klemic, J. F., Smith, D. A. & Mehregany, M. A rotary electrostatic micromotor 1/spl times/8 optical switch. IEEE J. Sel. Top. Quantum Electron. 5, 26–32 (1999). (PMID: 10.1109/2944.748101)
Lee, S., Kim, D., Bryant, M. D. & Ling, F. F. A micro corona motor. Sens. Actuators A 118, 226–232 (2005). (PMID: 10.1016/j.sna.2004.08.017)
Leng, J. et al. Design and analysis of a corona motor with a novel multi-stage structure. J. Electrostat. 109, 103538 (2021). (PMID: 10.1016/j.elstat.2020.103538)
Chang, J.-S., Lawless, P. A. & Yamamoto, T. Corona discharge processes. IEEE Trans. Plasma Sci. 19, 1152–1166 (1991). (PMID: 10.1109/27.125038)
Deng, S., Percin, M. & van Oudheusden, B. Aerodynamic characterization of ‘DelFly Micro’ in forward flight configuration by force measurements and flow field visualization. Procedia Eng. 99, 925–929 (2015). (PMID: 10.1016/j.proeng.2014.12.623)
Park, S., Drew, D. S., Follmer, S. & Rivas-Davila, J. Lightweight high voltage generator for untethered electroadhesive perching of micro air vehicles. IEEE Robot. Autom. Lett. 5, 4485–4492 (2020). (PMID: 10.1109/LRA.2020.3001520)
Ravi, V. & Lakshminarasamma, N. Steady state voltage gain of flyback converters for high voltage low power applications. In 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES) 1–6 (IEEE, 2016).
Kewei, H., Jie, L., Xiaolin, H. & Ningjun, F. Analysis and simulation of the influence of transformer parasitics to low power high voltage output flyback converter. In 2008 IEEE International Symposium on Industrial Electronics 305–310 (IEEE, 2008).
Zhiguo, Z. & Lin, Z. Analysis and design of isolated flyback voltage-multiplier converter for low-voltage input and high-voltage output applications. IET Power Electron. 6, 1100–1110 (2013). (PMID: 10.1049/iet-pel.2012.0552)
Dall’Asta, M. S., Fuerback, V. B. & Lazzarin, T. B. DCM forward-flyback converter integrated with a 5-order Cockcroft–Walton voltage multiplier: a steady-state and resonant current analysis. In 2017 Brazilian Power Electronics Conference (COBEP) 1–6 (IEEE, 2017).
Serrano-Vargas, J. A., Oliver, J. A. & Alou, P. Forward–flyback converter with Cockcroft–Walton voltage multiplier in DCM: steady-state analysis considering the parasitic capacitances to achieve the optimal valley-switching operation with 95.11% efficiency at 3 kV/1.5 W. IEEE J. Emerg. Sel. Top. Power Electron. 10, 2351–2361 (2022). (PMID: 10.1109/JESTPE.2021.3131363)
Yan, X., Qi, M. & Lin, L. Self-lifting artificial insect wings via electrostatic flapping actuators. In 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) 22–25 (IEEE, 2015).
Drew, D. S. & Pister, K. S. J. First takeoff of a flying microrobot with no moving parts. In 2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS) 1–5 (IEEE, 2017).
Chen, N. et al. A self-rotating, single-actuated UAV with extended sensor field of view for autonomous navigation. Sci. Robot. 8, eade4538 (2023). (PMID: 10.1126/scirobotics.ade453836921018)
Johnson, K. et al. Toward sub-gram helicopters: designing a miniaturized flybar for passive stability. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2701–2708 (IEEE, 2023).
Quan, Q. Introduction to Multicopter Design and Control (Springer 2017).
Shastry, A. K., Kothari, M. & Abhishek, A. Generalized flight dynamic model of quadrotor using hybrid blade element momentum theory. J. Aircr. 55, 2162–2168 (2018). (PMID: 10.2514/1.C034899)
Xiao, K., Meng, Y., Dai, X., Zhang, H. & Quan, Q. A lifting wing fixed on multirotor UAVs for long flight ranges. In 2021 International Conference on Unmanned Aircraft Systems (ICUAS) 1605−1610 (IEEE, 2021).
Harrington, A. M. Optimal Propulsion System Design for A Micro Quad Rotor (Univ. Maryland, 2011).
تواريخ الأحداث: Date Created: 20240717 Date Completed: 20240717 Latest Revision: 20240717
رمز التحديث: 20240718
DOI: 10.1038/s41586-024-07609-4
PMID: 39020037
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-024-07609-4