دورية أكاديمية

The downregulation of genes encoding muscle proteins have a potential role in the development of scrotal hernia in pigs.

التفاصيل البيبلوغرافية
العنوان: The downregulation of genes encoding muscle proteins have a potential role in the development of scrotal hernia in pigs.
المؤلفون: Lorenzetti WR; Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Rua Beloni Trombeta Zanin 680E, Chapecó, Santa Catarina, 89815-630, Brazil., Ibelli AMG; Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil.; Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838, Guarapuava, Paraná, 85040-167, Brazil.; Embrapa Pecuária Sudeste, Rodovia Washington Luiz, Km 234, São Carlos, São Paulo, 13560-970, Brazil., Peixoto JO; Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil.; Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838, Guarapuava, Paraná, 85040-167, Brazil., Savoldi IR; Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Rua Beloni Trombeta Zanin 680E, Chapecó, Santa Catarina, 89815-630, Brazil.; Laudo laboratório Avícola, Rodovia BR-365, Morumbi, Uberlândia, Minas Gerais, 38407180, Brazil., Mores MAZ; Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil., de Souza Romano G; Universidade Federal da Bahia, Salvador, Bahia, Brazil., do Carmo KB; Universidade do Contestado, Concórdia, Santa Catarina, Brazil.; Instituto Federal Catarinense, Rodovia SC 283, km 17, Concórdia, Santa Catarina, 89703-720, Brazil., Ledur MC; Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Rua Beloni Trombeta Zanin 680E, Chapecó, Santa Catarina, 89815-630, Brazil. monica.ledur@embrapa.br.; Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil. monica.ledur@embrapa.br.
المصدر: Molecular biology reports [Mol Biol Rep] 2024 Jul 18; Vol. 51 (1), pp. 822. Date of Electronic Publication: 2024 Jul 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Reidel Country of Publication: Netherlands NLM ID: 0403234 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-4978 (Electronic) Linking ISSN: 03014851 NLM ISO Abbreviation: Mol Biol Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Dordrecht, Boston, Reidel.
مواضيع طبية MeSH: Scrotum*/metabolism , Scrotum*/abnormalities , Scrotum*/pathology , Down-Regulation*/genetics, Animals ; Male ; Swine/genetics ; Hernia, Inguinal/genetics ; Hernia, Inguinal/metabolism ; Hernia, Inguinal/veterinary ; Gene Expression Profiling/methods ; Swine Diseases/genetics ; Swine Diseases/metabolism ; Myosin Heavy Chains/genetics ; Myosin Heavy Chains/metabolism
مستخلص: Background: Testicular descent is a physiological process regulated by many factors. Eventually, disturbances in the embryological/fetal development path facilitate the occurrence of scrotal hernia, a congenital malformation characterized by the presence of intestinal portions within the scrotal sac due to the abnormal expansion of the inguinal ring. In pigs, some genes have been related to this anomaly, but the genetic mechanisms involved remain unclear. This study aimed to investigate the expression profile of a set of genes potentially involved with the manifestation of scrotal hernia in the inguinal ring tissue.
Methods and Results: Tissue samples from the inguinal ring/canal of normal and scrotal hernia-affected male pigs with approximately 30 days of age were used. Relative expression analysis was performed using qPCR to confirm the expression profile of 17 candidate genes previously identified in an RNA-Seq study. Among them, the Myosin heavy chain 1 (MYH1), Desmin (DES), and Troponin 1 (TNNI1) genes were differentially expressed between groups and had reduced levels of expression in the affected animals. These genes encode proteins involved in the formation of muscle tissue, which seems to be important for increasing the resistance of the inguinal ring to the abdominal pressure, which is essential to avoid the occurrence of scrotal hernia.
Conclusions: The downregulation of muscular candidate genes in the inguinal tissue clarifies the genetic mechanisms involved with this anomaly in its primary site, providing useful information for developing strategies to control this malformation in pigs and other mammals.
(© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Groenen MAM, Archibald AL, Uenishi H et al (2012) Analyses of pig genomes provide insight into porcine demography and evolution. Nature 2012 491:7424 491:393–398. https://doi.org/10.1038/nature11622.
González-Prendes R, Quintanilla R, Cánovas A et al (2017) Joint QTL mapping and gene expression analysis identify positional candidate genes influencing pork quality traits. Sci Rep 2017 7(1 7):1–9. https://doi.org/10.1038/srep39830. (PMID: 10.1038/srep39830)
Ding R, Quan J, Yang M et al (2017) Genome-wide association analysis reveals genetic loci and candidate genes for feeding behavior and eating efficiency in Duroc boars. PLoS ONE 12:e0183244. https://doi.org/10.1371/JOURNAL.PONE.0183244. (PMID: 10.1371/JOURNAL.PONE.0183244288135385559094)
Rothschild MF, Hu ZL, Jiang Z (2007) Advances in QTL mapping in pigs. Int J Biol Sci 3:192–197. https://doi.org/10.7150/IJBS.3.192. (PMID: 10.7150/IJBS.3.192173847381802014)
Webb EC, Casey NH (2010) Physiological limits to growth and the related effects on meat quality. Livest Sci 130:33–40. https://doi.org/10.1016/J.LIVSCI.2010.02.008. (PMID: 10.1016/J.LIVSCI.2010.02.008)
Vogt DW, Ellersieck MR (1990) Heritability of susceptibility to scrotal herniation in swine. Am J Vet Res 51:1501–1503. (PMID: 10.2460/ajvr.1990.51.09.15012396801)
Grindflek E, Moe M, Taubert H et al (2006) Genome-wide linkage analysis of inguinal hernia in pigs using affected sib pairs. BMC Genet 7:25. https://doi.org/10.1186/1471-2156-7-25. (PMID: 10.1186/1471-2156-7-25166720481475630)
Searcy-Bernal R, Gardner IA, Hird DW (1994) Effects of and factors associated with umbilical hernias in a swine herd. J Am Vet Med Assoc 204:1660–1664. (PMID: 10.2460/javma.1994.204.10.16608050950)
Amann RP, Veeramachaneni DNR (2007) Cryptorchidism in common eutherian mammals. Reproduction 133:541–561. https://doi.org/10.1530/REP-06-0272. (PMID: 10.1530/REP-06-027217379650)
Hughes IA, Acerini CL (2008) Factors controlling testis descent. Eur J Endocrinol 159:S75–82. https://doi.org/10.1530/EJE-08-0458. (PMID: 10.1530/EJE-08-045818647820)
Hutson JM, Hasthorpe S (2005) Abnormalities of testicular descent. Cell Tissue Res 322:155–158. https://doi.org/10.1007/s00441-005-1126-4. (PMID: 10.1007/s00441-005-1126-415965656)
Hutson JM, Li R, Southwell BR et al (2015) Regulation of testicular descent. Pediatr Surg Int 31:317–325. (PMID: 10.1007/s00383-015-3673-425690562)
Mamoulakis C, Antypas S, Sofras F et al (2015) Testicular Descent. Hormones 2015 14:4 14:515–530. https://doi.org/10.14310/HORM.2002.1634.
MAGEE WT (1951) Inheritance of scrotal hernia in swine. J Anim Sci 10:516–522. https://doi.org/10.2527/jas1951.102516x. (PMID: 10.2527/jas1951.102516x14832159)
Sevillano CA, Lopes MS, Harlizius B et al (2015) Genome-wide association study using deregressed breeding values for cryptorchidism and scrotal/inguinal hernia in two pig lines. Genet Selection Evol 47:1–8. https://doi.org/10.1186/s12711-015-0096-6. (PMID: 10.1186/s12711-015-0096-6)
Thaller G, Dempfle L, Hoeschele I (1996) Investigation of the inheritance of birth defects in swine by complex segregation analysis. J Anim Breed Genet 113:77–92. https://doi.org/10.1111/j.1439-0388.1996.tb00593.x. (PMID: 10.1111/j.1439-0388.1996.tb00593.x)
Ding NS, Mao HR, Guo YM et al (2009) A genome-wide scan reveals candidate susceptibility loci for pig hernias in an intercross between White Duroc and Erhualian1. J Anim Sci 87:2469–2474. https://doi.org/10.2527/jas.2008-1601. (PMID: 10.2527/jas.2008-160119359506)
Zhao X, Du ZQ, Vukasinovic N et al (2009) Association of HOXA10, ZFPM2, and MMP2 genes with scrotal hernias evaluated via biological candidate gene analyses in pigs. Am J Vet Res 70:1006–1012. https://doi.org/10.2460/AJVR.70.8.1006. (PMID: 10.2460/AJVR.70.8.100619645582)
Lago LV, da Silva AN, Zanella EL et al (2018) Identification of Genetic Regions Associated with Scrotal hernias in a commercial swine herd. Vet Sci 5:15. https://doi.org/10.3390/VETSCI5010015. (PMID: 10.3390/VETSCI5010015293820565876567)
Xu W, Chen D, Yan G et al (2019) Rediscover and refine QTLs for Pig Scrotal Hernia by increasing a specially designed F3 Population and using whole-genome sequence Imputation Technology. Front Genet 890. https://doi.org/10.3389/fgene.2019.00890.
Manalaysay JG, Antonio ND, Apilado RLR et al (2017) Screening of BCL-2 associated X protein gene polymorphism associated with scrotal hernia in domesticated swine using polymerase chain reaction-restriction fragment length polymorphism. Asian-Australas J Anim Sci 30:262–266. https://doi.org/10.5713/ajas.16.0022. (PMID: 10.5713/ajas.16.002227165023)
Beck J, Bornemann-Kolatzki K, Knorr C et al (2006) Molecular characterization and exclusion of porcine GUSB as a candidate gene for congenital hernia inguinalis/scrotalis. BMC Vet Res 28:14. https://doi.org/10.1186/1746-6148-2-14. (PMID: 10.1186/1746-6148-2-14)
Du ZQ, Zhao X, Vukasinovic N et al (2009) Association and haplotype analyses of positional candidate genes in five genomic regions linked to scrotal hernia in commercial pig lines. PLoS ONE 4:e4837. https://doi.org/10.1371/journal.pone.0004837. (PMID: 10.1371/journal.pone.0004837192874952654076)
Romano G, de Ibelli S, Lorenzetti AMG WR, et al (2020) Inguinal ring RNA sequencing reveals downregulation of muscular genes related to scrotal hernia in pigs. Genes (Basel) 11:117. https://doi.org/10.3390/genes11020117. (PMID: 10.3390/genes1102011731973088)
Rodrigues AFG, Ibelli AMG, Peixoto J, de O et al (2021) Genes and snps involved with scrotal and umbilical hernia in pigs. Genes (Basel) 12:1–23. https://doi.org/10.3390/genes12020166. (PMID: 10.3390/genes12020166)
Elansary M, Stinckens A, Ahariz N et al (2015) On the use of the transmission disequilibrium test to detect pseudo-autosomal variants affecting traits with sex-limited expression. Anim Genet 46:395–402. https://doi.org/10.1111/age.12296. (PMID: 10.1111/age.1229625996251)
Nowacka-Woszuk J (2021) The genetic background of hernia in pigs: a review. Livest Sci 244:104317. https://doi.org/10.1016/j.livsci.2020.104317. (PMID: 10.1016/j.livsci.2020.104317)
Ye J, Coulouris G, Zaretskaya I et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. https://doi.org/10.1186/1471-2105-13-134. (PMID: 10.1186/1471-2105-13-134227085843412702)
Lorenzetti WR, Ibelli AMG, De Oliveira Peixoto J et al (2018) Identification of endogenous normalizing genes for expression studies in inguinal ring tissue for scrotal hernias in pigs. PLoS ONE 13:1–17. https://doi.org/10.1371/journal.pone.0204348. (PMID: 10.1371/journal.pone.0204348)
Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30. https://doi.org/10.1093/NAR/30.9.E36.
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:45e–445. https://doi.org/10.1093/nar/29.9.e45. (PMID: 10.1093/nar/29.9.e45)
Wu T, Hu E, Xu S et al (2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2:100141. https://doi.org/10.1016/j.xinn.2021.100141. (PMID: 10.1016/j.xinn.2021.100141345577788454663)
R Core Team (2021) R: A Language and Environment for Statistical Computing. https://www.r-project.org.
Morsczeck C, Korenkov M, Nagelschmidt M et al (2008) Total RNA-isolation of abdominal hernia of rats for quantitative real-time reverse transcription (RT) PCR assays. Prep Biochem Biotechnol 38:87–93. https://doi.org/10.1080/10826060701774387. (PMID: 10.1080/1082606070177438718080913)
Soito ICS, Favorito LA, Costa WS et al (2011) Extracellular matrix remodeling in the human gubernaculum during fetal testicular descent and in cryptorchidic children. World J Urol 29:535–540. https://doi.org/10.1007/s00345-011-0702-3. (PMID: 10.1007/s00345-011-0702-321626117)
Costa WS, Sampaio FJB, Favorito LA, Cardoso LEM (2002) Testicular migration: remodeling of connective tissue and muscle cells in human gubernaculum testis. J Urol 167:2171–2176. https://doi.org/10.1016/S0022-5347(05)65122-1. (PMID: 10.1016/S0022-5347(05)65122-111956474)
Bendavid R (2004) The Unified Theory of hernia formation. Hernia 8:171–176. https://doi.org/10.1007/s10029-004-0217-6. (PMID: 10.1007/s10029-004-0217-615293113)
Rodrigues Junior AJ, Rodrigues CJ, da Cunha ACP, Jin Y (2002) Quantitative analysis of collagen and elastic fibers in the transversalis fascia in direct and indirect inguinal hernia. Rev Hosp Clin Fac Med Sao Paulo 57:265–270. https://doi.org/10.1590/S0041-87812002000600004. (PMID: 10.1590/S0041-8781200200060000412612758)
Brandt ML (2008) Pediatric Hernias. Surg Clin North Am 88:27–43. https://doi.org/10.1016/j.suc.2007.11.006. (PMID: 10.1016/j.suc.2007.11.00618267160)
Necas J, Bartosikova L, Brauner P, Kolar J (2008) Hyaluronic acid (hyaluronan): a review. Vet Med (Praha) 53:397–411. https://doi.org/10.17221/1930-VETMED. (PMID: 10.17221/1930-VETMED)
Fallacara A, Baldini E, Manfredini S, Vertuani S (2018) Hyaluronic acid in the third millennium. Polym (Basel) 10:701. https://doi.org/10.3390/polym10070701. (PMID: 10.3390/polym10070701)
Paulin D, Li Z (2004) Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle. Exp Cell Res 301:1–7. https://doi.org/10.1016/j.yexcr.2004.08.004. (PMID: 10.1016/j.yexcr.2004.08.00415501438)
Schiaffino S, Rossi AC, Smerdu V et al (2015) Developmental myosins: expression patterns and functional significance. Skelet Muscle 15:22. https://doi.org/10.1186/s13395-015-0046-6. (PMID: 10.1186/s13395-015-0046-6)
DeNardi C, Ausoni S, Moretti P et al (1993) Type 2X-myosin heavy chain is coded by a muscle fiber type-specific and developmentally regulated gene. J Cell Biol 123:823–835. https://doi.org/10.1083/jcb.123.4.823. (PMID: 10.1083/jcb.123.4.8238227143)
Komatsu Y, Sukegawa S, Yamashita M et al (2016) Identification of genes showing differential expression profile associated with growth rate in skeletal muscle tissue of Landrace weanling pig. J Genet 95:341–347. https://doi.org/10.1007/s12041-016-0643-0. (PMID: 10.1007/s12041-016-0643-027350678)
Li A, Mo D, Zhao X et al (2013) Comparison of the longissimus muscle proteome between obese and lean pigs at 180 days. Mamm Genome 24:72–79. https://doi.org/10.1007/s00335-012-9440-0. (PMID: 10.1007/s00335-012-9440-023160730)
Xu YJ, Jin ML, Wang LJ et al (2009) Differential proteome analysis of porcine skeletal muscles between Meishan and large White. J Anim Sci 87:2519–2527. https://doi.org/10.2527/jas.2008-1708. (PMID: 10.2527/jas.2008-170819420230)
Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924. https://doi.org/10.1152/physrev.2000.80.2.853. (PMID: 10.1152/physrev.2000.80.2.85310747208)
Yang H, Xu ZY, Lei MG et al (2010) Association of 3 polymorphisms in porcine troponin I genes (TNNI1 and TNNI2) with meat quality traits. J Appl Genet 51:51–57. https://doi.org/10.1007/BF03195710/METRICS. (PMID: 10.1007/BF03195710/METRICS20145300)
Mullen AJ, Barton PJR (2000) Structural characterization of the human fast skeletal muscle troponin I gene (TNNI2). Gene 242:313–320. https://doi.org/10.1016/S0378-1119(99)00519-3. (PMID: 10.1016/S0378-1119(99)00519-310721725)
Beuermann C, Beck J, Schmelz U et al (2009) Tissue calcium content in piglets with inguinal or scrotal hernias or Cryptorchidism. J Comp Pathol 140:182–186. https://doi.org/10.1016/j.jcpa.2008.11.006. (PMID: 10.1016/j.jcpa.2008.11.00619118841)
Shpilka T, Weidberg H, Pietrokovski S, Elazar Z (2011) Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol 12:1–11. https://doi.org/10.1186/GB-2011-12-7-226/FIGURES/4. (PMID: 10.1186/GB-2011-12-7-226/FIGURES/4)
Lee YK, Lee JA (2016) Role of the mammalian ATG8/LC3 family in autophagy: Differential and compensatory roles in the spatiotemporal regulation of autophagy. BMB Rep 49:424–430. https://doi.org/10.5483/BMBRep.2016.49.8.081. (PMID: 10.5483/BMBRep.2016.49.8.081274182835070729)
Thorburn A (2008) Apoptosis and autophagy: Regulatory connections between two supposedly different processes. Apoptosis 13:1–9. https://doi.org/10.1007/s10495-007-0154-9. (PMID: 10.1007/s10495-007-0154-9179901212601595)
Mouravas VK, Koletsa T, Sfougaris DK et al (2010) Smooth muscle cell differentiation in the processus vaginalis of children with hernia or hydrocele. Hernia 14:187–191. https://doi.org/10.1007/s10029-009-0588-9. (PMID: 10.1007/s10029-009-0588-919937078)
Tanyel FC, Müftüoglu S, Dagdeviren A et al (2001) Myofibroblasts defined by electron microscopy suggest the dedifferentiation of smooth muscle within the sac walls associated with congenital inguinal hernia. BJU Int 87:251–255. https://doi.org/10.1046/j.1464-410X.2001.02028.x. (PMID: 10.1046/j.1464-410X.2001.02028.x11167652)
Iozzo RV, Schaefer L (2015) Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 42:11–55. https://doi.org/10.1016/j.matbio.2015.02.003. (PMID: 10.1016/j.matbio.2015.02.003257012274859157)
Sivan SS, Wachtel E, Roughley P (2014) Structure, function, aging and turnover of aggrecan in the intervertebral disc. Biochim Biophys Acta Gen Subj 1840:3181–3189. https://doi.org/10.1016/j.bbagen.2014.07.013. (PMID: 10.1016/j.bbagen.2014.07.013)
Tanyel FC (2004) The descent of testis and reason for failed descent. Turk J Pediatr 46:7–17. (PMID: 15499793)
Yang J, Huang T, Petralia F et al (2015) Synchronized age-related gene expression changes across multiple tissues in human and the link to complex diseases. Sci Rep 5:15145. https://doi.org/10.1038/srep15145. (PMID: 10.1038/srep15145264774954609956)
معلومات مُعتمدة: 476146/2013 National Council of Scientific and Technological Development (CNPq)
فهرسة مساهمة: Keywords: Anomaly; Congenital malformation; Gene expression; Inguinal ring; Swine
المشرفين على المادة: EC 3.6.4.1 (Myosin Heavy Chains)
تواريخ الأحداث: Date Created: 20240718 Date Completed: 20240718 Latest Revision: 20240718
رمز التحديث: 20240718
DOI: 10.1007/s11033-024-09766-1
PMID: 39023774
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-4978
DOI:10.1007/s11033-024-09766-1