دورية أكاديمية

Metal content, bioaccumulation, translocation, and health risk assessment of root vegetables grown in KwaZulu-Natal small-scale farms of South Africa.

التفاصيل البيبلوغرافية
العنوان: Metal content, bioaccumulation, translocation, and health risk assessment of root vegetables grown in KwaZulu-Natal small-scale farms of South Africa.
المؤلفون: Zondo SG; KwaZulu-Natal Department of Agriculture and Rural Development, Private Bag X6005, Hilton, 3245, South Africa. sandisiwe.zondo@kzndard.gov.za.
المصدر: Environmental monitoring and assessment [Environ Monit Assess] 2024 Jul 19; Vol. 196 (8), pp. 752. Date of Electronic Publication: 2024 Jul 19.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
أسماء مطبوعة: Publication: 1998- : Dordrecht : Springer
Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
مواضيع طبية MeSH: Vegetables*/chemistry , Vegetables*/metabolism , Soil Pollutants*/analysis , Soil Pollutants*/metabolism , Farms* , Environmental Monitoring*/methods, South Africa ; Risk Assessment ; Bioaccumulation ; Metals/metabolism ; Metals/analysis ; Plant Roots/metabolism ; Plant Roots/chemistry ; Humans ; Food Contamination/analysis ; Solanum tuberosum/metabolism ; Solanum tuberosum/chemistry ; Metals, Heavy/analysis ; Metals, Heavy/metabolism ; Daucus carota/metabolism ; Daucus carota/chemistry ; Colocasia/metabolism ; Ipomoea batatas/metabolism
مستخلص: Metal uptake by vegetables is becoming a threat to the life of consumers. Therefore, continuous monitoring of metals in vegetables and soils is becoming a necessity. In this study, the occurrence of 18 metals in amadumbe (Colocasia esculenta L.), sweet potatoes (Ipomoea batatas L.), potatoes (Solanum tuberosum L.), and carrots (Daucus carrota L.) grown in small-scale South African agricultural farms was monitored using inductively coupled plasma-optical emission spectroscopy. All the 18 investigated elements were detected in soils and different vegetative plants parts. Bioaccumulation factors indicated the transfer of selected metals from soils into the plant roots. Toxic metals Cd, Cr, and Pb had their concentrations exceeding the maximum permissible levels set by the World Health Organization in the edible parts of all root vegetables. Cd and Pb varied between 18.89 and 19.19 mg kg -1 and 10.46 and 11.46 mg kg -1 , respectively, while Cr remained constant at 16.78 mg kg -1 . The exact metals together with As and Ni had their total hazard quotients exceeding the threshold value of 1, which indicated that the daily consumption of the investigated root vegetables is likely to pose health risks to both adults and children. Therefore, this study points out to a possibility of toxic health effects that could arise when these vegetables are consumed daily.
(© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
References: Addo-Bediako, A., Marr, S. M., Jooste, A., & Luus-Powell, W. J. (2014). Are metals in the muscle tissue of Mozambique tilapia a threat to human health? A case study of two impoundments in the Olifants River, Limpopo province, South Africa. Annales De Limnologie-International Journal of Limnology, 50, 201–210. https://doi.org/10.1051/limn/2014091. (PMID: 10.1051/limn/2014091)
Ali, M. H., & Al-Qahtani, K. M. (2012). Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. The Egyptian Journal of Aquatic Research, 38(1), 31–37. https://doi.org/10.1016/j.ejar.2012.08.002. (PMID: 10.1016/j.ejar.2012.08.002)
Augustsson, A. L., Uddh-Söderberg, T. E., Hogmalm, K. J., & Filipsson, M. E. (2015). Metal uptake by homegrown vegetables–The relative importance in human health risk assessments at contaminated sites. Environmental Research, 138, 181–190. https://doi.org/10.1016/j.envres.2015.01.020. (PMID: 10.1016/j.envres.2015.01.020)
Balabanova, B., Stafilov, T., & Bačeva, K. (2015). Bioavailability and bioaccumulation characterization of essential and heavy metals contents in R. acetosa, S. oleracea and U. dioica from copper polluted and referent areas. Journal of Environmental Health Science and Engineering, 13, 1–13. https://doi.org/10.1186/s40201-015-0159-1. (PMID: 10.1186/s40201-015-0159-1)
Banerjee, P., & Bhattacharya, P. (2021). Investigating cobalt in soil-plant-animal-human system: Dynamics, impact and management. Journal of Soil Science and Plant Nutrition, 21(3), 2339–2354. https://doi.org/10.1007/s42729-021-00525-w. (PMID: 10.1007/s42729-021-00525-w)
Bhuiyan, M. A. H., Karmaker, S. C., Bodrud-Doza, M., Rakib, M. A., & Saha, B. B. (2021). Enrichment, sources and ecological risk mapping of heavy metals in agricultural soils of dhaka district employing SOM. PMF and GIS Methods. Chemosphere, 263, 128339.
Cherfi, A., Achour, M., Cherfi, M., Otmani, S., & Morsli, A. (2015). Health risk assessment of heavy metals through consumption of vegetables irrigated with reclaimed urban wastewater in Algeria. Process Safety and Environmental Protection, 98, 245–252. https://doi.org/10.1016/j.psep.2015.08.004. (PMID: 10.1016/j.psep.2015.08.004)
Cheshmazar, E., Arfaeinia, H., Karimyan, K., Sharafi, H., & Hashemi, S. E. (2018). Dataset for effect comparison of irrigation by wastewater and ground water on amount of heavy metals in soil and vegetables: Accumulation, transfer factor and health risk assessment. Data in Brief, 18, 1702–1710. https://doi.org/10.1016/j.dib.2018.04.108. (PMID: 10.1016/j.dib.2018.04.108)
Durowoju, O. S., Odiyo, J. O., & Ekosse, G.-I.E. (2016). Variations of heavy metals from geothermal spring to surrounding soil and Mangifera indica–Siloam village, Limpopo Province. Sustainability, 8(1), 60. https://doi.org/10.3390/su8010060. (PMID: 10.3390/su8010060)
Edelstein, M., & Ben-Hur, M. (2018). Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Scientia Horticulturae, 234, 431–444. https://doi.org/10.1016/j.scienta.2017.12.039. (PMID: 10.1016/j.scienta.2017.12.039)
Elbagermi, M., Edwards, H., & Alajtal, A. (2012). Monitoring of heavy metal content in fruits and vegetables collected from production and market sites in the Misurata area of Libya. International Scholarly Research Notices, 2012. https://doi.org/10.5402/2012/827645.
Garg, V., Yadav, P., Mor, S., Singh, B., & Pulhani, V. (2014). Heavy metals bioconcentration from soil to vegetables and assessment of health risk caused by their ingestion. Biological Trace Element Research, 157, 256–265. https://doi.org/10.1007/s12011-014-9892-z. (PMID: 10.1007/s12011-014-9892-z)
Godt, J., Scheidig, F., Grosse-Siestrup, C., Esche, V., Brandenburg, P., Reich, A., & Groneberg, D. A. (2006). The toxicity of cadmium and resulting hazards for human health. Journal of Occupational Medicine and Toxicology, 1(1), 1–6. https://doi.org/10.1186/1745-6673-1-22. (PMID: 10.1186/1745-6673-1-22)
Gupta, S. K., Ansari, F. A., Nasr, M., Chabukdhara, M., & Bux, F. (2018). Multivariate analysis and health risk assessment of heavy metal contents in foodstuffs of Durban, South Africa. Environmental Monitoring and Assessment, 190, 1–15. https://doi.org/10.1007/s10661-018-6546-1. (PMID: 10.1007/s10661-018-6546-1)
Heath, S., & Plater, A. (2010). Records of pan (floodplain wetland) sedimentation as an approach for post-hoc investigation of the hydrological impacts of dam impoundment: The Pongolo river. KwaZulu-Natal. Water Research, 44(14), 4226–4240. https://doi.org/10.1016/j.watres.2010.05.026. (PMID: 10.1016/j.watres.2010.05.026)
Hlungwane, L., Viljoen, E. L., & Pakade, V. E. (2018). Macadamia nutshells-derived activated carbon and attapulgite clay combination for synergistic removal of Cr (VI) and Cr (III). Adsorption Science & Technology, 36(1–2), 713–731. https://doi.org/10.1177/0263617417719552. (PMID: 10.1177/0263617417719552)
Hoaghia, M.-A., Cadar, O., Moisa, C., Roman, C., & Kovacs, E. (2022). Heavy metals and health risk assessment in vegetables grown in the vicinity of a former non-metallic facility located in Romania. Environmental Science and Pollution Research, 29(26), 40079–40093. https://doi.org/10.1007/s11356-022-18879-8. (PMID: 10.1007/s11356-022-18879-8)
Intawongse, M., & Dean, J. R. (2006). Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Additives and Contaminants, 23(1), 36–48. https://doi.org/10.1080/0265203050038755. (PMID: 10.1080/0265203050038755)
Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167–182. https://doi.org/10.1093/bmb/ldg032. (PMID: 10.1093/bmb/ldg032)
Kharazi, A., Leili, M., Khazaei, M., Alikhani, M. Y., & Shokoohi, R. (2021). Human health risk assessment of heavy metals in agricultural soil and food crops in Hamadan, Iran. Journal of Food Composition and Analysis, 100, 103890. https://doi.org/10.1016/j.jfca.2021.103890. (PMID: 10.1016/j.jfca.2021.103890)
Khezerlou, A., Dehghan, P., Moosavy, M.-H., & Kochakkhani, H. (2021). Assessment of heavy metal contamination and the probabilistic risk via salad vegetable consumption in Tabriz, Iran. Biological Trace Element Research, 199, 2779–2787. https://doi.org/10.1007/s12011-020-02365-8. (PMID: 10.1007/s12011-020-02365-8)
Li, B., Wang, Y., Jiang, Y., Li, G., Cui, J., Wang, Y., Zhang, H., Wang, S., Xu, S., & Wang, R. (2016). The accumulation and health risk of heavy metals in vegetables around a zinc smelter in northeastern China. Environmental Science and Pollution Research, 23, 25114–25126. https://doi.org/10.1007/s11356-016-7342-5. (PMID: 10.1007/s11356-016-7342-5)
Luo, D., Zheng, H., Chen, Y., Wang, G., & Fenghua, D. (2010). Transfer characteristics of cobalt from soil to crops in the suburban areas of Fujian Province, southeast China. Journal of Environmental Management, 91(11), 2248–2253. https://doi.org/10.1016/j.jenvman.2010.06.001. (PMID: 10.1016/j.jenvman.2010.06.001)
Mahlangeni, N., Moodley, R., & Jonnalagadda, S. (2012). Soil nutrient content on elemental uptake and distribution in sweet potatoes. International Journal of Vegetable Science, 18(3), 245–259. (PMID: 10.1080/19315260.2011.628369)
Mahlangeni, N. T., Moodley, R., & Jonnalagadda, S. B. (2019). Uptake, translocation, and bioaccumulation of elements in forest nettle (Laportea alatipes). Analytical Letters, 52(7), 1050–1067. https://doi.org/10.1080/19315260.2011.628369. (PMID: 10.1080/19315260.2011.628369)
Malan, M., Müller, F., Cyster, L., Raitt, L., & Aalbers, J. (2015). Heavy metals in the irrigation water, soils and vegetables in the Philippi horticultural area in the Western Cape Province of South Africa. Environmental Monitoring and Assessment, 187, 1–8. https://doi.org/10.1007/s10661-014-4085-y. (PMID: 10.1007/s10661-014-4085-y)
Meck, M. L., Mudimbu, D., & Davies, T. (2020). Accumulation of potentially harmful elements in edible parts of vegetables grown on two different geological substrates in Zimbabwe. Journal of Geochemical Exploration, 208, 106392. https://doi.org/10.1016/j.gexplo.2019.106392. (PMID: 10.1016/j.gexplo.2019.106392)
Melai, V., Giovannini, A., Chiumiento, F., Bellocci, M., & Migliorati, G. (2018). Occurrence of metals in vegetables and fruits from areas near landfill in Southern Italy and implications for human exposure. International Journal of Food Contamination, 5, 1–13. https://doi.org/10.1186/s40550-018-0070-5. (PMID: 10.1186/s40550-018-0070-5)
Moyo, B., Matodzi, V., Legodi, M. A., Pakade, V. E., & Tavengwa, N. T. (2020). Determination of Cd, Mn and Ni accumulated in fruits, vegetables and soil in the Thohoyandou town area, South Africa. Water SA, 46(2), 285–290. https://doi.org/10.17159/wsa/2020.v46.i2.8244. (PMID: 10.17159/wsa/2020.v46.i2.8244)
Naangmenyele, Z., Ncube, S., Akpabey, F. J., Dube, S., & Nindi, M. M. (2021). Levels and potential health risk of elements in two indigenous vegetables from Golinga irrigation farms in the Northern Region of Ghana. Journal of Food Composition and Analysis, 96, 103750. https://doi.org/10.1016/j.jfca.2020.103750. (PMID: 10.1016/j.jfca.2020.103750)
Paltseva, A., Cheng, Z., Deeb, M., Groffman, P. M., Shaw, R. K., & Maddaloni, M. (2018). Accumulation of arsenic and lead in garden-grown vegetables: Factors and mitigation strategies. Science of the Total Environment, 640, 273–283. https://doi.org/10.1016/j.scitotenv.2018.05.296. (PMID: 10.1016/j.scitotenv.2018.05.296)
Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39. https://doi.org/10.1146/annurev.arplant.56.032604.144214. (PMID: 10.1146/annurev.arplant.56.032604.144214)
Radulescu, C., Stihi, C., Popescu, I., Dulama, I., Chelarescu, E., & Chilian, A. (2013). Heavy metal accumulation and translocation in different parts of Brassica oleracea L. Romanian Journal of Physics, 58(9–10), 1337–1354.
Rahimzadeh, M. R., Rahimzadeh, M. R., Kazemi, S., & Moghadamnia, A.-A. (2017). Cadmium toxicity and treatment: An update. Caspian Journal of Internal Medicine, 8(3), 135. https://doi.org/10.22088/cjim.8.3.135. (PMID: 10.22088/cjim.8.3.135)
Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K.-H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125, 365–385. https://doi.org/10.1016/j.envint.2019.01.067. (PMID: 10.1016/j.envint.2019.01.067)
Reddy, M., Moodley, R., Kindness, A., & Jonnalagadda, S. B. (2011). Impact of soil quality on elemental uptake by, and distribution in, Colocasia esculenta (Amadumbe), an edible root. Journal of Environmental Science and Health, Part B, 46(3), 247–256. https://doi.org/10.1080/03601234.2011.540533. (PMID: 10.1080/03601234.2011.540533)
Rehm, G. (2008). Calcium and magnesium: The secondary cousins (pp. 1–7). University of Minnesota.
Rudani, L., Vishal, P., & Kalavati, P. (2018). The importance of zinc in plant growth-A review. International Research Journal of Natural and Applied Sciences, 5(2), 38–48.
Saldaña-Robles, A., Abraham-Juárez, M., Saldaña-Robles, A., Saldaña-Robles, N., Ozuna, C., & Gutiérrez-Chávez, A. (2018). The negative effect of arsenic in agriculture: Irrigation water, soil and crops, state of the art. Applied Ecology and Environmental Research, 16(2), 1533–1551. https://doi.org/10.15666/aeer/1602_15331551. (PMID: 10.15666/aeer/1602_15331551)
Sathawara, N., Parikh, D., & Agarwal, Y. (2004). Essential heavy metals in environmental samples from Western India. Bulletin of Environmental Contamination & Toxicology, 73(4). https://doi.org/10.1007/s00128-004-0490-1.
Seleiman, M. F., Alotaibi, M. A., Alhammad, B. A., Alharbi, B. M., Refay, Y., & Badawy, S. A. (2020a). Effects of ZnO nanoparticles and biochar of rice straw and cow manure on characteristics of contaminated soil and sunflower productivity, oil quality, and heavy metals uptake. Agronomy, 10(6), 790. https://doi.org/10.3390/agronomy10060790. (PMID: 10.3390/agronomy10060790)
Seleiman, M. F., Santanen, A., & Mäkelä, P. S. (2020b). Recycling sludge on cropland as fertilizer–Advantages and risks. Resources, Conservation and Recycling, 155, 104647. https://doi.org/10.1016/j.resconrec.2019.104647. (PMID: 10.1016/j.resconrec.2019.104647)
Shahid, M. J., Ali, S., Shabir, G., Siddique, M., Rizwan, M., Seleiman, M. F., & Afzal, M. (2020). Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water. Chemosphere, 243, 125353. https://doi.org/10.1016/j.chemosphere.2019.125353. (PMID: 10.1016/j.chemosphere.2019.125353)
Sihlahla, M., Mouri, H., & Nomngongo, P. N. (2019). Uptake of trace elements by vegetable plants grown on agricultural soils: Evaluation of trace metal accumulation and potential health risk. Journal of African Earth Sciences, 160, 103635. https://doi.org/10.1016/j.jafrearsci.2019.103635. (PMID: 10.1016/j.jafrearsci.2019.103635)
Tiwari, K., Singh, N., Patel, M., Tiwari, M., & Rai, U. (2011). Metal contamination of soil and translocation in vegetables growing under industrial wastewater irrigated agricultural field of Vadodara, Gujarat India. Ecotoxicology and Environmental Safety, 74(6), 1670–1677. https://doi.org/10.1016/j.ecoenv.2011.04.029. (PMID: 10.1016/j.ecoenv.2011.04.029)
Wang, Z., Hassan, M. U., Nadeem, F., Wu, L., Zhang, F., & Li, X. (2020). Magnesium fertilization improves crop yield in most production systems: A meta-analysis. Frontiers in plant science, 1727. https://doi.org/10.3389/fpls.2019.01727.
Wen, X., Zhang, Z., & Huang, X. (2022). Heavy metals in karst tea garden soils under different ecological environments in southwestern China. Tropical Ecology, 63(4), 495–505. https://doi.org/10.1007/s42965-022-00218-0. (PMID: 10.1007/s42965-022-00218-0)
Yi, Z., Lehto, N. J., Robinson, B. H., & Cavanagh, J.-A.E. (2020). Environmental and edaphic factors affecting soil cadmium uptake by spinach, potatoes, onion and wheat. Science of the Total Environment, 713, 136694. https://doi.org/10.1016/j.scitotenv.2020.136694. (PMID: 10.1016/j.scitotenv.2020.136694)
Zhou, H., Yang, W.-T., Zhou, X., Liu, L., Gu, J.-F., Wang, W.-L., Zou, J.-L., Tian, T., Peng, P.-Q., & Liao, B.-H. (2016). Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. International Journal of Environmental Research and Public Health, 13(3), 289. https://doi.org/10.3390/ijerph13030289. (PMID: 10.3390/ijerph13030289)
فهرسة مساهمة: Keywords: Bioaccumulation; Human risk assessment; Metals; Root vegetables; Translocation
المشرفين على المادة: 0 (Soil Pollutants)
0 (Metals)
0 (Metals, Heavy)
تواريخ الأحداث: Date Created: 20240719 Date Completed: 20240719 Latest Revision: 20240811
رمز التحديث: 20240813
DOI: 10.1007/s10661-024-12920-8
PMID: 39028326
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-2959
DOI:10.1007/s10661-024-12920-8