دورية أكاديمية

Loss of bmp15 function in the seasonal spawner Atlantic salmon results in ovulatory failure.

التفاصيل البيبلوغرافية
العنوان: Loss of bmp15 function in the seasonal spawner Atlantic salmon results in ovulatory failure.
المؤلفون: Crespo D; Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway., Fjelldal PG; Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway., Hansen TJ; Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway., Kjærner-Semb E; Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway., Skaftnesmo KO; Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway., Thorsen A; Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway., Norberg B; Research Group Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, Haukanes, Norway., Edvardsen RB; Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway., Andersson E; Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway., Schulz RW; Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway.; Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands., Wargelius A; Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway., Kleppe L; Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway.
المصدر: FASEB journal : official publication of the Federation of American Societies for Experimental Biology [FASEB J] 2024 Jul 31; Vol. 38 (14), pp. e23837.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Federation of American Societies for Experimental Biology Country of Publication: United States NLM ID: 8804484 Publication Model: Print Cited Medium: Internet ISSN: 1530-6860 (Electronic) Linking ISSN: 08926638 NLM ISO Abbreviation: FASEB J Subsets: MEDLINE
أسماء مطبوعة: Publication: 2020- : [Bethesda, Md.] : Hoboken, NJ : Federation of American Societies for Experimental Biology ; Wiley
Original Publication: [Bethesda, Md.] : The Federation, [c1987-
مواضيع طبية MeSH: Bone Morphogenetic Protein 15*/genetics , Bone Morphogenetic Protein 15*/metabolism , Salmo salar*/metabolism , Salmo salar*/genetics , Salmo salar*/growth & development , Ovulation*, Animals ; Female ; Ovary/metabolism ; Ovarian Follicle/metabolism ; Oocytes/metabolism ; Male ; Fish Proteins/genetics ; Fish Proteins/metabolism ; Seasons
مستخلص: Bone morphogenetic protein 15 (BMP15) is an oocyte-specific growth factor important for successful female reproduction in mammals. While mutations in BMP15/Bmp15 cause ovulatory deficiency and/or infertility in certain mammalian species, loss of bmp15 in zebrafish, a continuous spawner and the only bmp15 knockout model in fish to date, results in complete arrest of follicle development and later female-to-male sex reversal, preventing to examine effects on ovulation/fertilization. Here, we used Atlantic salmon, a seasonal spawner, and generated bmp15 mutants to investigate ovarian development and fertility. Histological and morphometric analyses revealed that in biallelic frameshift (bmp15 fs/fs) mutant ovaries, folliculogenesis started earlier, resulting in an advanced development compared to wild-type (WT) controls, accompanied by a weaker expression of the (early) oocyte-specific factor figla. This precocious ovarian development was followed in bmp15 fs/fs females by enhanced follicle atresia during vitellogenic stages. Although genes involved in steroid synthesis and signaling (star, cyp11b, cyp17a1 and esr1) were dramatically higher in late vitellogenic bmp15 fs/fs mutant ovaries, estradiol-17β plasma levels were lower than in WT counterparts, potentially reflecting compensatory changes at the level of ovarian gene expression. At spawning, bmp15 fs/fs females displayed lower gonado-somatic index values and reduced oocyte diameter, and the majority (71.4%), showed mature non-ovulating ovaries with a high degree of atresia. The remaining (28.6%) females spawned eggs but they either could not be fertilized or, upon fertilization, showed severe malformations and embryonic mortality. Our results show that Bmp15 is required for proper follicle recruitment and growth and later ovulatory success in Atlantic salmon, providing an alternative candidate target to induce sterility in farmed salmon. Moreover, since loss of bmp15 in salmon, in contrast to zebrafish, does not result in female-to-male sex change, this is the first mutant model in fish allowing further investigations on Bmp15-mediated functions in the ovulatory period.
(© 2024 The Author(s). The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.)
References: Li JZ, Ge W. Zebrafish as a model for studying ovarian development: recent advances from targeted gene knockout studies. Mol Cell Endocrinol. 2020;507:110778.
Sanchez F, Smitz J. Molecular control of oogenesis. Biochim Biophys Acta. 2012;1822:1896‐1912.
Erickson GF, Shimasaki S. The physiology of folliculogenesis: the role of novel growth factors. Fertil Steril. 2001;76:943‐949.
Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122:829‐838.
Dube JL, Wang P, Elvin J, Lyons KM, Celeste AJ, Matzuk MM. The bone morphogenetic protein 15 gene is X‐linked and expressed in oocytes. Mol Endocrinol. 1998;12:1809‐1817.
Yan C, Wang P, DeMayo J, et al. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol. 2001;15:854‐866.
Galloway SM, McNatty KP, Cambridge LM, et al. Mutations in an oocyte‐derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage‐sensitive manner. Nat Genet. 2000;25:279‐283.
Celestino JJ, Lima‐Verde IB, Bruno JB, et al. Steady‐state level of bone morphogenetic protein‐15 in goat ovaries and its influence on in vitro development and survival of preantral follicles. Mol Cell Endocrinol. 2011;338:1‐9.
Su YQ, Wu X, O'Brien MJ, et al. Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte‐cumulus cell complex in mice: genetic evidence for an oocyte‐granulosa cell regulatory loop. Dev Biol. 2004;276:64‐73.
Afkhami F, Shahbazi S, Farzadi L, Danaei S. Novel bone morphogenetic protein 15 (BMP15) gene variants implicated in premature ovarian insufficiency. Reprod Biol Endocrinol. 2022;20:42.
Rossetti R, Ferrari I, Bestetti I, et al. Fundamental role of BMP15 in human ovarian folliculogenesis revealed by null and missense mutations associated with primary ovarian insufficiency. Hum Mutat. 2020;41:983‐997.
Otsuka F, McTavish KJ, Shimasaki S. Integral role of GDF‐9 and BMP‐15 in ovarian function. Mol Reprod Dev. 2011;78:9‐21.
Flossmann G, Wurmser C, Pausch H, et al. A nonsense mutation of bone morphogenetic protein‐15 (BMP15) causes both infertility and increased litter size in pigs. BMC Genomics. 2021;22:38.
Zhai Y, Zhang X, Zhao C, et al. Rescue of bmp15 deficiency in zebrafish by mutation of inha reveals mechanisms of BMP15 regulation of folliculogenesis. PLoS Genet. 2023;19:e1010954.
Dranow DB, Hu K, Bird AM, et al. Bmp15 is an oocyte‐produced signal required for maintenance of the adult female sexual phenotype in zebrafish. PLoS Genet. 2016;12:e1006323.
Otsuka F, Yao Z, Lee T, Yamamoto S, Erickson GF, Shimasaki S. Bone morphogenetic protein‐15. Identification of target cells and biological functions. J Biol Chem. 2000;275:39523‐39528.
Otsuka F, Yamamoto S, Erickson GF, Shimasaki S. Bone morphogenetic protein‐15 inhibits follicle‐stimulating hormone (FSH) action by suppressing FSH receptor expression. J Biol Chem. 2001;276:11387‐11392.
Qin Y, Tang T, Li W, et al. Bone morphogenetic protein 15 knockdown inhibits porcine ovarian follicular development and ovulation. Front Cell Dev Biol. 2019;7:286.
Ito H, Emori C, Kobayashi M, et al. Cooperative effects of oocytes and estrogen on the forkhead box L2 expression in mural granulosa cells in mice. Sci Rep. 2022;12:20158.
Palomino J, Herrera G, Dettleff P, Martinez V. Growth differentiation factor 9 and bone morphogenetic protein 15 expression in previtellogenic oocytes and during early embryonic development of yellow‐tail kingfish Seriola lalandi. Biol Res. 2014;47:60.
Wu GC, Luo JW, Li HW, Huang CH, Chang CF. Robust gdf9 and bmp15 expression in the oocytes of ovotestes through the Figla‐independent pathway in the hermaphroditic black porgy, Acanthopagrus schlegelii. PLoS One. 2017;12:e0186991.
Chen AQ, Liu ZW, Yang ZG, Leng XJ. Characterization of bmp15 and its regulation by human chorionic gonadotropin in the follicle of gibel carp (Carassius auratus gibelio). Comp Biochem Physiol B Biochem Mol Biol. 2012;163:121‐128.
Zhang Y, Yuan C, Qin F, Hu G, Wang Z. Molecular characterization of gdf9 and bmp15 genes in rare minnow Gobiocypris rarus and their expression upon bisphenol A exposure in adult females. Gene. 2014;546:214‐221.
Shi R, Li X, Cheng P, et al. Characterization of growth differentiation factor 9 and bone morphogenetic factor 15 in Chinese tongue sole (Cynoglossus semilaevis): sex‐biased expression pattern and promoter regulation. Theriogenology. 2022;182:119‐128.
Garcia‐Lopez A, Sanchez‐Amaya MI, Halm S, Astola A, Prat F. Bone morphogenetic protein 15 and growth differentiation factor 9 expression in the ovary of European sea bass (Dicentrarchus labrax): cellular localization, developmental profiles, and response to unilateral ovariectomy. Gen Comp Endocrinol. 2011;174:326‐334.
Clelland E, Kohli G, Campbell RK, Sharma S, Shimasaki S, Peng C. Bone morphogenetic protein‐15 in the zebrafish ovary: complementary deoxyribonucleic acid cloning, genomic organization, tissue distribution, and role in oocyte maturation. Endocrinology. 2006;147:201‐209.
Tan Q, Balofsky A, Weisz K, Peng C. Role of activin, transforming growth factor‐beta and bone morphogenetic protein 15 in regulating zebrafish oocyte maturation. Comp Biochem Physiol A Mol Integr Physiol. 2009;153:18‐23.
Clelland ES, Tan Q, Balofsky A, Lacivita R, Peng C. Inhibition of premature oocyte maturation: a role for bone morphogenetic protein 15 in zebrafish ovarian follicles. Endocrinology. 2007;148:5451‐5458.
Yu H, Wang Y, Wang M, Liu Y, Cheng J, Zhang Q. Growth differentiation factor 9 (gdf9) and bone morphogenetic protein 15 (bmp15) are potential intraovarian regulators of steroidogenesis in Japanese flounder (Paralichthys olivaceus). Gen Comp Endocrinol. 2020;297:113547.
Yadav H, Lal B. Cellular localization and seasonal variation in BMP15 expression in ovary of the catfish Clarias batrachus and its role in ovarian steroidogenesis. Theriogenology. 2019;129:14‐22.
Kleppe L, Edvardsen RB, Furmanek T, Andersson E, Juanchich A, Wargelius A. bmp15l, figla, smc1bl, and larp6l are preferentially expressed in germ cells in Atlantic salmon (Salmo salar L.). Mol Reprod Dev. 2017;84:76‐87.
Kleppe L, Edvardsen RB, Furmanek T, et al. Transcriptomic analysis of dead end knockout testis reveals germ cell and gonadal somatic factors in Atlantic salmon. BMC Genomics. 2020;21:99.
Bolstad GH, Karlsson S, Hagen IJ, et al. Introgression from farmed escapees affects the full life cycle of wild Atlantic salmon. Sci Adv. 2021;7:eabj3397.
Taranger GL, Carrillo M, Schulz RW, et al. Control of puberty in farmed fish. Gen Comp Endocrinol. 2010;165:483‐515.
Hwang WY, Fu Y, Reyon D, et al. Heritable and precise zebrafish genome editing using a CRISPR‐Cas system. PLoS One. 2013;8:e68708.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403‐410.
Waterhouse A, Bertoni M, Bienert S, et al. SWISS‐MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296‐W303.
Halm S, Ibanez AJ, Tyler CR, Prat F. Molecular characterisation of growth differentiation factor 9 (gdf9) and bone morphogenetic protein 15 (bmp15) and their patterns of gene expression during the ovarian reproductive cycle in the European sea bass. Mol Cell Endocrinol. 2008;291:95‐103.
Duckert P, Brunak S, Blom N. Prediction of proprotein convertase cleavage sites. Protein Eng Des Sel. 2004;17:107‐112.
Gagnon JA, Valen E, Thyme SB, et al. Efficient mutagenesis by Cas9 protein‐mediated oligonucleotide insertion and large‐scale assessment of single‐guide RNAs. PLoS One. 2014;9:e98186.
Andersson E, Schulz RW, Almeida F, et al. Loss of Fshr prevents testicular maturation in Atlantic salmon (Salmo salar L.). Endocrinology. 2024;165:bqae013.
Edvardsen RB, Leininger S, Kleppe L, Skaftnesmo KO, Wargelius A. Targeted mutagenesis in Atlantic salmon (Salmo salar L.) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation. PLoS One. 2014;9:e108622.
Wargelius A, Leininger S, Skaftnesmo KO, et al. Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci Rep. 2016;6:21284.
Ayllon F, Solberg MF, Glover KA, et al. The influence of vgll3 genotypes on sea age at maturity is altered in farmed mowi strain Atlantic salmon. BMC Genet. 2019;20:44.
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792‐1797.
Duston J, Bromage N. The entrainment and gating of the endogenous circannual rhythm of reproduction in the female rainbow trout (Salmo gairdneri). J Comp Physiol A. 1988;164:259‐268.
Vikingstad E, Andersson E, Hansen TJ, et al. Effects of temperature on the final stages of sexual maturation in Atlantic salmon (Salmo salar L.). Fish Physiol Biochem. 2016;42:895‐907.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real‐time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402‐408.
Olsvik PA, Lie KK, Jordal AE, Nilsen TO, Hordvik I. Evaluation of potential reference genes in real‐time RT‐PCR studies of Atlantic salmon. BMC Mol Biol. 2005;6:21.
Pankhurst NW, Carragher JF. Oocyte maturation and changes in plasma steroid‐levels in snapper pagrus (=Chrysophrys) auratus (Sparidae) following treatment with human chorionic‐gonadotropin. Aquaculture. 1992;101:337‐347.
Cuisset B, Pradelles P, Kime DE, et al. Enzyme immunoassay for 11‐ketotestosterone using acetylcholinesterase as laberl: application to the measurement of 11‐ketotestosterone in plasma of Siberian sturgeon. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1994;108:229‐241.
Andersson E, Schulz RW, Male R, et al. Pituitary gonadotropin and ovarian gonadotropin receptor transcript levels: seasonal and photoperiod‐induced changes in the reproductive physiology of female Atlantic salmon (Salmo salar). Gen Comp Endocrinol. 2013;191:247‐258.
Chen Y, Ma B, Wang X, et al. Potential functions of the BMP family in bone, obesity, and glucose metabolism. J Diabetes Res. 2021;2021:6707464.
Kamiya N, Mishina Y. New insights on the roles of BMP signaling in bone‐a review of recent mouse genetic studies. Biofactors. 2011;37:75‐82.
Hansen T, Fjelldal PG, Yurtseva A, Berg A. A possible relation between growth and number of deformed vertebrae in Atlantic salmon (Salmo salar L.). J Appl Ichthyol. 2010;26:355‐359.
Witten PE, Gil‐Martens L, Huysseune A, Takle H, Hjelde K. Towards a classification and an understanding of developmental relationships of vertebral body malformations in Atlantic salmon (Salmo salar L.). Aquaculture. 2009;295:6‐14.
Andersson E, Nijenhuis W, Male R, et al. Pharmacological characterization, localization and quantification of expression of gonadotropin receptors in Atlantic salmon (Salmo salar L.) ovaries. Gen Comp Endocrinol. 2009;163:329‐339.
Taranger GL, Haux C, Hansen T, et al. Mechanisms underlying photoperiodic effects on age at sexual maturity in Atlantic salmon. Aquaculture. 1999;177:47‐60.
Lien S, Koop BF, Sandve SR, et al. The Atlantic salmon genome provides insights into rediploidization. Nature. 2016;533:200‐205.
Qin M, Zhang Z, Song W, et al. Roles of Figla/figla in juvenile ovary development and follicle formation during zebrafish Gonadogenesis. Endocrinology. 2018;159:3699‐3722.
Ayllon F, Solberg MF, Besnier F, et al. Autosomal sdY pseudogenes explain discordances between phenotypic sex and DNA marker for sex identification in Atlantic Salmon. Front Genet. 2020;11:544207.
Kleppe L, Andersson E, Skaftnesmo KO, et al. Sex steroid production associated with puberty is absent in germ cell‐free salmon. Sci Rep. 2017;7:12584.
Yano A, Guyomard R, Nicol B, et al. An immune‐related gene evolved into the master sex‐determining gene in rainbow trout, Oncorhynchus mykiss. Curr Biol. 2012;22:1423‐1428.
Wilson CA, High SK, McCluskey BM, et al. Wild sex in zebrafish: loss of the natural sex determinant in domesticated strains. Genetics. 2014;198:1291‐1308.
Patino LC, Walton KL, Mueller TD, et al. BMP15 mutations associated with primary ovarian insufficiency reduce expression, activity, or synergy with GDF9. J Clin Endocrinol Metab. 2017;102:1009‐1019.
Peng J, Li Q, Wigglesworth K, et al. Growth differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proc Natl Acad Sci USA. 2013;110:E776‐E785.
Tingen C, Kim A, Woodruff TK. The primordial pool of follicles and nest breakdown in mammalian ovaries. Mol Hum Reprod. 2009;15:795‐803.
Zhao L, Du X, Huang K, et al. Rac1 modulates the formation of primordial follicles by facilitating STAT3‐directed Jagged1, GDF9 and BMP15 transcription in mice. Sci Rep. 2016;6:23972.
Rossetti R, Di Pasquale E, Marozzi A, et al. BMP15 mutations associated with primary ovarian insufficiency cause a defective production of bioactive protein. Hum Mutat. 2009;30:804‐810.
Hussein TS, Froiland DA, Amato F, Thompson JG, Gilchrist RB. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci. 2005;118:5257‐5268.
Braw‐Tal R, McNatty KP, Smith P, et al. Ovaries of ewes homozygous for the X‐linked Inverdale gene (FecXI) are devoid of secondary and tertiary follicles but contain many abnormal structures. Biol Reprod. 1993;49:895‐907.
Sullivan CV, Yilmaz O. Vitellogenesis and yolk proteins, fish. In: Skinner MK, ed. Encyclopedia of reproduction. Vol 6. Academic Press; 2018:266‐277.
Juengel JL, Hudson NL, Berg M, et al. Effects of active immunization against growth differentiation factor 9 and/or bone morphogenetic protein 15 on ovarian function in cattle. Reproduction. 2009;138:107‐114.
McNatty KP, Hudson NL, Whiting L, et al. The effects of immunizing sheep with different BMP15 or GDF9 peptide sequences on ovarian follicular activity and ovulation rate. Biol Reprod. 2007;76:552‐560.
Hagemann LJ. Influence of the dominant follicle on oocytes from subordinate follicles. Theriogenology. 1999;51:449‐459.
Di Pasquale E, Brivanlou AH. Bone morphogenetic protein 15 (BMP15) acts as a BMP and Wnt inhibitor during early embryogenesis. J Biol Chem. 2009;284:26127‐26136.
Li Y, Li RQ, Ou SB, et al. Increased GDF9 and BMP15 mRNA levels in cumulus granulosa cells correlate with oocyte maturation, fertilization, and embryo quality in humans. Reprod Biol Endocrinol. 2014;12:81.
Mommens M, Storset A, Babiak I. Some quantitative indicators of postovulatory aging and its effect on larval and juvenile development of Atlantic salmon (Salmo salar). Theriogenology. 2015;84:170‐176.e2.
Noble C, Gismervik K, Iversen MH, et al. Welfare indicators for farmed Atlantic salmon: tools for assessing fish welfare. 2018.
Almeida FL, Skaftnesmo KO, Andersson E, et al. The Piwil1 N domain is required for germ cell survival in Atlantic salmon. Front Cell Dev Biol. 2022;10:977779.
Kleppe L, Wargelius A, Johnsen H, Andersson E, Edvardsen RB. Gonad specific genes in Atlantic salmon (Salmon salar L.): characterization of tdrd7‐2, dazl‐2, piwil1 and tdrd1 genes. Gene. 2015;560:217‐225.
Nagasawa K, Fernandes JM, Yoshizaki G, Miwa M, Babiak I. Identification and migration of primordial germ cells in Atlantic salmon, Salmo salar: characterization of vasa, dead end, and lymphocyte antigen 75 genes. Mol Reprod Dev. 2013;80:118‐131.
Belli M, Shimasaki S. Molecular aspects and clinical relevance of GDF9 and BMP15 in ovarian function. Vitam Horm. 2018;107:317‐348.
Piferrer F. Endocrine sex control strategies for the feminization of teleost fish. Aquaculture. 2001;197:229‐281.
معلومات مُعتمدة: 267610 Norges Forskningsråd (Forskningsrådet); 245979 Norges Forskningsråd (Forskningsrådet); 302532 Norges Forskningsråd (Forskningsrådet)
فهرسة مساهمة: Keywords: Atlantic salmon; CRISPR/Cas9; bone morphogenetic protein 15; oogenesis; ovulation
المشرفين على المادة: 0 (Bone Morphogenetic Protein 15)
0 (Fish Proteins)
تواريخ الأحداث: Date Created: 20240720 Date Completed: 20240720 Latest Revision: 20240820
رمز التحديث: 20240820
DOI: 10.1096/fj.202400370R
PMID: 39031536
قاعدة البيانات: MEDLINE
الوصف
تدمد:1530-6860
DOI:10.1096/fj.202400370R