دورية أكاديمية

Substrate and nutrient manipulation during continuous cultivation of extremophilic algae, Galdieria spp. RTK 37.1, substantially impacts biomass productivity and composition.

التفاصيل البيبلوغرافية
العنوان: Substrate and nutrient manipulation during continuous cultivation of extremophilic algae, Galdieria spp. RTK 37.1, substantially impacts biomass productivity and composition.
المؤلفون: Buckeridge E; Te Tari Pūhanga Tukanga Matū, Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha, University of Canterbury, Christchurch, Aotearoa, New Zealand., Caballero CC; Te Tari Pūhanga Tukanga Matū, Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha, University of Canterbury, Christchurch, Aotearoa, New Zealand.; Scion Te Papa Tipu Innovation Park, Rotorua, Aotearoa, New Zealand.; Laboratorio de Biorefinería, Universidad Nacional, Heredia, Costa Rica., Smith DH; Te Tari Pūhanga Tukanga Matū, Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha, University of Canterbury, Christchurch, Aotearoa, New Zealand., Stott MB; Te Kura Pūtaiao Koiora-School of Biological Sciences, Te Whare Wānanga o Waitaha, University of Canterbury, Christchurch, Aotearoa, New Zealand., Carere CR; Te Tari Pūhanga Tukanga Matū, Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha, University of Canterbury, Christchurch, Aotearoa, New Zealand.
المصدر: Biotechnology and bioengineering [Biotechnol Bioeng] 2024 Jul 19. Date of Electronic Publication: 2024 Jul 19.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 7502021 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0290 (Electronic) Linking ISSN: 00063592 NLM ISO Abbreviation: Biotechnol Bioeng Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005->: Hoboken, NJ : Wiley
Original Publication: New York, Wiley.
مستخلص: The extremophilic nature and metabolic flexibility of Galdieria spp. highlights their potential for biotechnological application. However, limited research into continuous cultivation of Galdieria spp. has slowed progress towards the commercialization of these algae. The objective of this research was to investigate biomass productivity and growth yields during continuous photoautotrophic, mixotrophic and heterotrophic cultivation of Galdieria sp. RTK371; a strain recently isolated from within the Taupō Volcanic Zone in Aotearoa-New Zealand. Results indicate Galdieria sp. RTK371 grows optimally at pH 2.5 under warm white LED illumination. Photosynthetic O 2 production was dependent on lighting intensity with a maximal value of (133.5 ± 12.1 nmol O 2 mg biomass -1  h -1 ) achieved under 100 μmol m -2  s -1 illumination. O 2 production rates slowed significantly to 42 ± 1 and <0.01 nmol O 2 mg biomass -1  h -1 during mixotrophic and heterotrophic growth regimes respectively. Stable, long-term chemostat growth of Galdieria sp. RTK371 was achieved during photoautotrophic, mixotrophic and heterotrophic growth regimes. During periods of ammonium limitation, Galdieria sp. RTK371 increased its intracellular carbohydrate content (up to 37% w/w). In contrast, biomass grown in ammonium excess was composed of up to 65% protein (w/w). Results from this study demonstrate that the growth of Galdieria sp. RTK371 can be manipulated during continuous cultivation to obtain desired biomass and product yields over long cultivation periods.
(© 2024 The Author(s). Biotechnology and Bioengineering published by Wiley Periodicals LLC.)
References: Abiusi, F., Moñino Fernández, P., Canziani, S., Janssen, M., Wijffels, R. H., & Barbosa, M. (2022). Mixotrophic cultivation of Galdieria sulphuraria for c‐phycocyanin and protein production. Algal Research, 61, 102603. https://doi.org/10.1016/j.algal.2021.102603.
Abiusi, F., Trompetter, E., Hoenink, H., Wijffels, R. H., & Janssen, M. (2021). Autotrophic and mixotrophic biomass production of the acidophilic Galdieria sulphuraria ACUF 64. Algal Research, 60, 102513. https://doi.org/10.1016/j.algal.2021.102513.
Ahn, J. Y., Kil, D. Y., Kong, C., & Kim, B. G. (2014). Comparison of oven‐drying methods for determination of moisture content in feed ingredients. Asian‐Australasian Journal of Animal Sciences, 27(11), 1615–1622. https://doi.org/10.5713/ajas.2014.14305.
Albertano, P., Ciniglia, C., Pinto, G., & Pollio, A. (2000). The taxonomic position of Cyanidium, Cyanidioschyzon and Galdieria: an update. Hydrobiologia, 433(1), 137–143. https://doi.org/10.1023/A:1004031123806.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2.
Baer, S., Heining, M., Schwerna, P., Buchholz, R., & Hübner, H. (2016). Optimization of spectral light quality for growth and product formation in different microalgae using a continuous photobioreactor. Algal Research, 14, 109–115. https://doi.org/10.1016/j.algal.2016.01.011.
Bailey, J. E., & Ollis, D. F. (1977). Biochemical engineering fundamentals: [By] James E. Bailey [and] David F. Ollis. McGraw‐Hill.
Barbier, G., Oesterhelt, C., Larson, M. D., Halgren, R. G., Wilkerson, C., Garavito, R. M., Benning, C., & Weber, A. P. (2005). Comparative genomics of two closely related unicellular thermo‐acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiology, 137(2), 460–474.
Barsanti, L E. V., Frassanito, A. M., Passarelli, V., & Gualtieri, P. (2008). Algal Toxins: Nature, Occurence, Effect and Detection.
Becker, E. W. (2007). Micro‐algae as a source of protein. Biotechnology Advances, 25(2), 207–210.
Benemann, J. R., Tillett, D. M., & Weissman, J. C. (1987). Microalgae biotechnology. Trends in Biotechnology, 5(2), 47–53.
Carbone, D. A., Olivieri, G., Pollio, A., & Melkonian, M. (2020). Comparison of Galdieria growth and photosynthetic activity in different culture systems. AMB Express, 10(1), 170. https://doi.org/10.1186/s13568-020-01110-7.
Carere, C. R., Hards, K., Houghton, K. M., Power, J. F., McDonald, B., Collet, C., Gapes, D. J., Sparling, R., Boyd, E. S., Cook, G. M., Greening, C., & Stott, M. B. (2017). Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. The ISME journal, 11(11), 2599–2610. https://doi.org/10.1038/ismej.2017.112.
Curien, G., Lyska, D., Guglielmino, E., Westhoff, P., Janetzko, J., Tardif, M., Hallopeau, C., Brugière, S., Dal Bo, D., Decelle, J., Gallet, B., Falconet, D., Carone, M., Remacle, C., Ferro, M., Weber, A. P. M., & Finazzi, G. (2021). Mixotrophic growth of the extremophile Galdieria sulphuraria reveals the flexibility of its carbon assimilation metabolism. New Phytologist, 231, 326–338. https://doi.org/10.1111/nph.17359.
Dunfield, P. F., Yuryev, A., Senin, P., Smirnova, A. V., Stott, M. B., Hou, S., Ly, B., Saw, J. H., Zhou, Z., Ren, Y., Wang, J., Mountain, B. W., Crowe, M. A., Weatherby, T. M., Bodelier, P. L. E., Liesack, W., Feng, L., Wang, L., & Alam, M. (2007). Methane oxidation by an extremely acidophilic bacterium of the phylum verrucomicrobia. Nature, 450(7171), 879–882. https://doi.org/10.1038/nature06411.
Ebeling, M. E. (2020). The dumas method for nitrogen in feeds. Journal of AOAC International, 51(4), 766–770. https://doi.org/10.1093/jaoac/51.4.766.
Eriksen, N. T. (2008). Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80(1), 1–14. https://doi.org/10.1007/s00253-008-1542-y.
Glazer, A. N. (1994). Phycobiliproteins—a family of valuable, widely used fluorophores. Journal of Applied Phycology, 6(2), 105–112.
Gopalakrishnan, K. (2015). Isolation, characterisation amd screening of New Zealand alphine algae for the production of secondary metabolites in photobioreactors (PhD, Thesis). The University of Canterbury, Christchurch, Canterbury.
Graverholt, O. S., & Eriksen, N. T. (2007). Heterotrophic high‐cell‐density fed‐batch and continuous‐flow cultures of Galdieria sulphuraria and production of phycocyanin. Applied Microbiology and Biotechnology, 77(1), 69–75. https://doi.org/10.1007/s00253-007-1150-2.
Graziani, G., Schiavo, S., Nicolai, M. A., Buono, S., Fogliano, V., Pinto, G., & Pollio, A. (2013). Microalgae as human food: chemical and nutritional characteristics of the thermo‐acidophilic microalga Galdieria sulphuraria. Food & Function, 4(1), 144–152. https://doi.org/10.1039/C2FO30198A.
Gregor, J., & Maršálek, B. (2005). A simple in vivo fluorescence method for the selective detection and quantification of freshwater Cyanobacteria and eukaryotic algae. Acta Hydrochimica et Hydrobiologica, 33(2), 142–148. https://doi.org/10.1002/aheh.200400558.
Gross, W., Heilmann, I., Lenze, D., & Schnarrenberger, C. (2001). Biogeography of the Cyanidiaceae (Rhodophyta) based on 18S ribosomal RNA sequence data. European Journal of Phycology, 36(3), 275–280.
Gross, W., Küver, J., Tischendorf, G., Bouchaala, N., & Büsch, W. (1998). Cryptoendolithic growth of the red alga Galdieria sulphuraria in volcanic areas. European Journal of Phycology, 33(1), 25–31.
Gross, W., & Oesterhelt, C. (1999). Ecophysiological studies on the red alga Galdieria sulphuraria isolated from southwest Iceland. Plant Biology, 1(06), 694–700.
Gross, W., & Schnarrenberger, C. (1995). Heterotrophic growth of two strains of the acido‐thermophilic red alga Galdieria sulphuraria. Plant and Cell Physiology, 36(4), 633–638.
Gross, W., Seipold, P., & Schnarrenberger, C. (1997). Characterization and purification of an aldose reductase from the acidophilic and thermophilic red alga Galdieria sulphuraria. Plant Physiology, 114(1), 231–236.
Hirooka, S., Itabashi, T., & Miyagishima, S.‐Y. (2022). Life cycle and functional genomics of the unicellular red alga Galdieria for elucidating algal and plant evolution and industrial use. Proceedings of the National Academy of Sciences, 119(41), e2210665119. https://doi.org/10.1073/pnas.2210665119.
Hirooka, S., & Miyagishima, S. (2016). Cultivation of acidophilic algae Galdieria sulphuraria and Pseudochlorella spp. YKT1 in media derived from acidic hot springs. Frontiers in Microbiology, 7(2022). https://doi.org/10.3389/fmicb.2016.02022.
Lafraie, M. A., & Betz, A. (1985). Anaerobic fermentation in Cyanidium caldarium. Planta, 163(1), 38–42. https://doi.org/10.1007/bf00395895.
Lee, J., Cho, D.‐H., Ramanan, R., Kim, B.‐H., Oh, H.‐M., & Kim, H.‐S. (2013). Microalgae‐associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresource Technology, 131, 195–201. https://doi.org/10.1016/j.biortech.2012.11.130.
Legner, M., McMillen, D. R., & Cvitkovitch, D. G. (2019). Role of dilution rate and nutrient availability in the formation of microbial biofilms. Frontiers in Microbiology, 10, 916. https://doi.org/10.3389/fmicb.2019.00916.
LeGresley, M., & McDermott, G. (2010). Counting chamber methods for quantitative phytoplankton analysis—haemocytometer, Palmer‐Maloney cell and Sedgewick‐Rafter cell. In B. Karlson, C. Cusack & E. Bresnan (Eds.), UNESCO IOC manuals and guides (pp. 25–30).
Lunder, T. L. (1971). Simplified procedure for determining fat and total solids by mojonnier method. Journal of Dairy Science, 54(5), 737–739. https://doi.org/10.3168/jds.S0022-0302(71)85917-9.
Maltsev, Y., Maltseva, K., Kulikovskiy, M., & Maltseva, S. (2021). Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition. Biology, 10(10), 1060. https://doi.org/10.3390/biology10101060.
Maria Cizkova, M. V. a. V. Z. (2019). The Red Micoalga Galdieria as a Promising Organism for Applications in Biotechnology Physiology to Applications.
Martinez‐Garcia, M., Kormpa, A., & van der Maarel, M. J. E. C. (2017). The glycogen of Galdieria sulphuraria as alternative to starch for the production of slowly digestible and resistant glucose polymers. Carbohydrate Polymers, 169, 75–82.
Martinez‐Garcia, M., & van der Maarel, M. J. E. C. (2016). Floridoside production by the red microalga Galdieria sulphuraria under different conditions of growth and osmotic stress. AMB Express, 6(1), 71. https://doi.org/10.1186/s13568-016-0244-6.
Mazumda, N. (2018). “Algal blushing”: Characterization and optimization of culture conditions of a novel alphine Haematococcur species from New Zealand for astaxanthin production (PhD, Thesis) The University of Canterbury, Christchurch, Canterbury.
Mozaffari, K., Seger, M., Dungan, B., & Holguin, F. O. (2019). Alterations in photosynthesis and energy reserves in Galdieria sulphuraria during corn stover hydrolysate supplementation. Bioresource Technology Reports, 7, 100269. https://doi.org/10.1016/j.biteb.2019.100269.
Náhlík, V., Zachleder, V., Čížková, M., Bišová, K., Singh, A., Mezricky, D., Řezanka, T., & Vítová, M. (2021). Growth under different trophic regimes and synchronization of the red microalga Galdieria sulphuraria. Biomolecules, 11(7), 939.
Oesterhelt, C., & Gross, W. (2002). Different sugar kinases are involved in the sugar sensing of Galdieria sulphuraria. Plant Physiology, 128(1), 291–299.
Oesterhelt, C., Schmälzlin, E., Schmitt, J. M., & Lokstein, H. (2007). Regulation of photosynthesis in the unicellular acidophilic red alga Galdieria sulphuraria†. The Plant Journal, 51(3), 500–511. https://doi.org/10.1111/j.1365-313X.2007.03159.x.
Oesterhelt, C., Schnarrenberger, C., & Gross, W. (1999). Characterization of a sugar/polyol uptake system in the red alga Galdieria sulphuraria. European Journal of Phycology, 34(3), 271–277.
Peter, A. P., Koyande, A. K., Chew, K. W., Ho, S.‐H., Chen, W.‐H., Chang, J.‐S., Krishnamoorthy, R., Banat, F., & Show, P. L. (2022). Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: current status and future challenges. Renewable and Sustainable Energy Reviews, 154, 111852. https://doi.org/10.1016/j.rser.2021.111852.
Pornpukdeewattana, S., Jindaprasert, A., & Massa, S. (2020). Alicyclobacillus spoilage and control—a review. Critical Reviews in Food Science and Nutrition, 60(1), 108–122. https://doi.org/10.1080/10408398.2018.1516190.
Ramanan, R., Kim, B.‐H., Cho, D.‐H., Oh, H.‐M., & Kim, H.‐S. (2016). Algae–bacteria interactions: evolution, ecology and emerging applications. Biotechnology Advances, 34(1), 14–29. https://doi.org/10.1016/j.biotechadv.2015.12.003.
Reeb, V., & Bhattacharya, D. (2010). Cellular Origin, Life in Extreme Habitats and Astrobiology, Red algae in the genomic age. (pp. 409–426). Springer.
Sahoo, D., & Seckbach, J. (2015). The Algae World. Dordrecht. Springer.
Sakurai, T., Aoki, M., Ju, X., Ueda, T., Nakamura, Y., Fujiwara, S., Umemura, T., Tsuzuki, M., & Minoda, A. (2016). Profiling of lipid and glycogen accumulations under different growth conditions in the sulfothermophilic red alga Galdieria sulphuraria. Bioresource Technology, 200, 861–866. https://doi.org/10.1016/j.biortech.2015.11.014.
Salvatore, M. M., Carraturo, F., Salbitani, G., Rosati, L., De Risi, A., Andolfi, A., Salvatore, F., Guida, M., & Carfagna, S. (2023). Biological and metabolic effects of the association between the microalga Galdieria sulphuraria and the fungus Penicillium citrinum. Scientific Reports, 13(1), 1789. https://doi.org/10.1038/s41598-023-27827-6.
Sarian, F. D., Rahman, D. Y., Schepers, O., & van der Maarel, M. J. E. C. (2016). Effects of oxygen limitation on the biosynthesis of photo pigments in the red microalgae Galdieria sulphuraria strain 074G. PLoS One, 11, e0148358. https://doi.org/10.1371/journal.pone.0148358.
Schmidt, R. A., Wiebe, M. G., & Eriksen, N. T. (2005). Heterotrophic high cell‐density fed‐batch cultures of the phycocyanin‐producing red alga Galdieria sulphuraria. Biotechnology and Bioengineering, 90(1), 77–84. https://doi.org/10.1002/bit.20417.
Seckbach, J. (1999). Enigmatic Microorganisms and Life in Extreme Environments. Springer.
Setyoningrum, T. M., & Nur, M. M. A. (2015). Optimization of C‐phycocyanin production from S. platensis cultivated on mixotrophic condition by using response surface methodology. Biocatalysis and Agricultural Biotechnology, 4(4), 603–607. https://doi.org/10.1016/j.bcab.2015.09.008.
Shimonaga, T., Konishi, M., Oyama, Y., Fujiwara, S., Satoh, A., Fujita, N., Colleoni, C., Buléon, A., Putaux, J.‐L., Ball, S. G., Yokoyama, A., Hara, Y., Nakamura, Y., & Tsuzuki, M. (2008). Variation in storage α‐Glucans of the porphyridiales (Rhodophyta). Plant and Cell Physiology, 49(1), 103–116. https://doi.org/10.1093/pcp/pcm172.
Sloth, J. K., Wiebe, M. G., & Eriksen, N. T. (2006). Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzyme and Microbial Technology, 38(1–2), 168–175.
Smith, D. (2020). Optimisation of Eicosapentaenoic Acid Production from New Zealand Microalga in a Tubular Photobioreactor. (Doctor of Philosophy), University of Canterbury, Christchurch, New Zealand.
Stadnichuk, I. N., Semenova, L. R., Smirnova, G. P., & Usov, A. I. (2007). A highly branched storage polyglucan in the thermoacidophilic red microalga Galdieria maxima cells. Applied Biochemistry and Microbiology, 43, 78–83. https://doi.org/10.1134/S0003683807010140.
Stott, M. B., Crowe, M. A., Mountain, B. W., Smirnova, A. V., Hou, S., Alam, M., & Dunfield, P. F. (2008). Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. Environmental Microbiology, 10(8), 2030–2041. https://doi.org/10.1111/j.1462-2920.2008.01621.x.
Sydney, E. B., Schafranski, K., Barretti, B. R. V., Sydney, A. C. N., Zimmerman, J. F. D., Cerri, M. L., & Mottin Demiate, I. (2019). Biomolecules from extremophile microalgae: From genetics to bioprocessing of a new candidate for large‐scale production. Process Biochemistry, 87, 37–44. https://doi.org/10.1016/j.procbio.2019.09.012.
Thiex, N., Novotny, L., & Crawford, A. (2019). Determination of ash in animal feed: AOAC official method 942.05 revisited. Journal of AOAC INTERNATIONAL, 95(5), 1392–1397. https://doi.org/10.5740/jaoacint.12-129.
Toplin, J. A., Norris, T. B., Lehr, C. R., McDermott, T. R., & Castenholz, R. W. (2008). Biogeographic and phylogenetic diversity of thermoacidophilic cyanidiales in Yellowstone national park, Japan, and New Zealand. Applied and Environmental Microbiology, 74(9), 2822–2833. https://doi.org/10.1128/AEM.02741-07.
Varshney, P., Mikulic, P., Vonshak, A., Beardall, J., & Wangikar, P. P. (2015). Extremophilic micro‐algae and their potential contribution in biotechnology. Bioresource Technology, 184, 363–372. https://doi.org/10.1016/j.biortech.2014.11.040.
Walker, J. J., Spear, J. R., & Pace, N. R. (2005). Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature, 434(7036), 1011–1014. https://doi.org/10.1038/nature03447.
Wong, J. F., Hong, H. J., Foo, S. C., Yap, M. K. K., & Tan, J. W. (2022). A review on current and future advancements for commercialized microalgae species. Food Science and Human Wellness, 11(5), 1156–1170. https://doi.org/10.1016/j.fshw.2022.04.007.
Yoon, H. S., Ciniglia, C., Wu, M., Comeron, J. M., Pinto, G., Pollio, A., & Bhattacharya, D. (2006). Establishment of endolithic populations of extremophilic cyanidiales (Rhodophyta). BMC Evolutionary Biology, 6(1), 78.
Yoon, H. S., Hackett, J. D., Pinto, G., & Bhattacharya, D. (2002). The single, ancient origin of chromist plastids. Proceedings of the National Academy of Sciences, 99(24), 15507–15512. https://doi.org/10.1073/pnas.242379899.
معلومات مُعتمدة: Marsden Fund; Ministry for Business Innovation and Employment; QT-7183 MBIE Smart
فهرسة مساهمة: Keywords: bioprocess; extremophile; galdieria; microalgae
تواريخ الأحداث: Date Created: 20240720 Latest Revision: 20240720
رمز التحديث: 20240721
DOI: 10.1002/bit.28814
PMID: 39032007
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-0290
DOI:10.1002/bit.28814