دورية أكاديمية

CRISPR/Cas9 technology in the modeling of and evaluation of possible treatments for Niemann-Pick C.

التفاصيل البيبلوغرافية
العنوان: CRISPR/Cas9 technology in the modeling of and evaluation of possible treatments for Niemann-Pick C.
المؤلفون: Reyhani-Ardabili M; Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran., Fathi M; Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran., Ghafouri-Fard S; Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran. s.ghafourifard@sbmu.ac.ir.
المصدر: Molecular biology reports [Mol Biol Rep] 2024 Jul 20; Vol. 51 (1), pp. 828. Date of Electronic Publication: 2024 Jul 20.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Reidel Country of Publication: Netherlands NLM ID: 0403234 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-4978 (Electronic) Linking ISSN: 03014851 NLM ISO Abbreviation: Mol Biol Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Dordrecht, Boston, Reidel.
مواضيع طبية MeSH: CRISPR-Cas Systems*/genetics , Niemann-Pick Disease, Type C*/therapy , Niemann-Pick Disease, Type C*/genetics , Niemann-Pick Disease, Type C*/metabolism , Gene Editing*/methods , Genetic Therapy*/methods , Cholesterol*/metabolism, Humans ; Animals ; Niemann-Pick C1 Protein ; Disease Models, Animal
مستخلص: Niemann-Pick disease type C (NPC) is a rare neurodegenerative condition resulted from mutations in NPC1 and NPC2 genes. This cellular lipid transferring disorder mainly involves endocytosed cholesterol trafficking. The accumulation of cholesterol and glycolipids in late endosomes and lysosomes results in progressive neurodegeneration and death. Recently, genome editing technologies, particularly CRISPR/Cas9 have offered the opportunity to create disease models to screen novel therapeutic options for this disorder. Moreover, these methods have been used for the purpose of gene therapy. This review summarizes the studies that focused on the application of CRISPR/Cas9 technology for exploring the mechanism of intracellular cholesterol transferring, and screening of novel agents for treatment of NPC.
(© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Vanier MT (2010) Niemann-Pick disease type C. Orphanet J Rare Dis 5(1):16. (PMID: 10.1186/1750-1172-5-16205252562902432)
Vanier MT (2010) Niemann-Pick disease type C. Orphanet J Rare Dis 5:16. (PMID: 10.1186/1750-1172-5-16205252562902432)
Greer WL, Riddell DC, Gillan TL, Girouard GS, Sparrow SM, Byers DM et al (1998) The Nova Scotia (type D) form of Niemann-Pick disease is caused by a G3097–>T transversion in NPC1. Am J Human Genet 63(1):52–54. (PMID: 10.1086/301931)
Vance JE (2006) Lipid imbalance in the neurological disorder. Niemann-Pick C Dis FEBS Lett 580(23):5518–5524. (PMID: 10.1016/j.febslet.2006.06.008)
Patterson MC, Mengel E, Wijburg FA, Muller A, Schwierin B, Drevon H et al (2013) Disease and patient characteristics in NP-C patients: findings from an international disease registry. Orphanet J Rare Dis 8(1):1–10.
Ory D (2000) Niemann-Pick type C: a disorder of cellular cholesterol trafficking. Biochimica et Biophysica Acta (BBA)—Mol Cell Biol Lipids 1529(1–3):331–339. (PMID: 10.1016/S1388-1981(00)00158-X)
Wojtanik KM, Liscum L (2003) The transport of low density lipoprotein-derived cholesterol to the plasma membrane is defective in NPC1 cells. J Biol Chem 278(17):14850–14856. (PMID: 10.1074/jbc.M30048820012591922)
Bolton SC, Soran V, Marfa MP, Imrie J, Gissen P, Jahnova H et al (2022) Clinical disease characteristics of patients with Niemann-Pick disease Type C: findings from the International Niemann-Pick disease registry (INPDR). Orphanet J Rare Dis 17(1):51. (PMID: 10.1186/s13023-022-02200-4351648098842861)
Tobias F, Pathmasiri KC, Cologna SM (2019) Mass spectrometry imaging reveals ganglioside and ceramide localization patterns during cerebellar degeneration in the Npc1(-/-) mouse model. Anal Bioanal Chem 411(22):5659–5668. (PMID: 10.1007/s00216-019-01989-731254056)
Sitarska D, Tylki-Szymańska A, Ługowska A (2021) Treatment trials in Niemann-Pick type C disease. Metab Brain Dis 36(8):2215–2221. (PMID: 10.1007/s11011-021-00842-0345968138580890)
Hughes MP, Nelvagal HR, Coombe-Tennant O, Smith D, Smith C, Massaro G et al (2023) A novel small NPC1 promoter enhances AAV-mediated gene therapy in mouse models of Niemann-Pick Type C1 disease. Cells 12(12):1619. (PMID: 10.3390/cells121216193737108910296851)
Ran F, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. (PMID: 10.1038/nprot.2013.143241575483969860)
Chen H, Choi J, Bailey S (2014) Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease. J Biol Chem 289(19):13284–13294. (PMID: 10.1074/jbc.M113.539726246342204036338)
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. (PMID: 10.1126/science.1225829227452496286148)
Xu Y, Li Z (2020) CRISPR-Cas systems: overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J 18:2401–2415. (PMID: 10.1016/j.csbj.2020.08.031330053037508700)
Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. (PMID: 10.1016/j.cell.2014.05.010249061464343198)
Li T, Yang Y, Qi H, Cui W, Zhang L, Fu X et al (2023) CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduct Target Ther 8(1):36. (PMID: 10.1038/s41392-023-01309-7366466879841506)
Weber J, Rad R (2019) Engineering CRISPR mouse models of cancer. Curr Opin Genet Dev 54:88–96. (PMID: 10.1016/j.gde.2019.04.00131078083)
Hall B, Cho A, Limaye A, Cho K, Khillan J, Kulkarni AB (2018) Genome editing in mice using CRISPR/Cas9 technology. Curr Protoc Cell Biol 81(1):e57. (PMID: 10.1002/cpcb.57301789179942237)
Redman M, King A, Watson C, King D (2016) What is CRISPR/Cas9? Arch Dis Child Educ Pract Ed 101(4):213–215. (PMID: 10.1136/archdischild-2016-310459270592834975809)
Du X et al (2017) CRISPR/Cas9-mediated generation of Niemann-Pick C1 knockout cell line. Cholesterol homeostasis: methods in molecular biology, Springer NY. (PMID: 10.1007/978-1-4939-6875-6_7)
Yang M, Zhao Y, Li X, Li H, Cheng F, Liu Y et al (2023) Conditioned medium of human menstrual blood-derived endometrial stem cells protects against cell inflammation and apoptosis of Npc1(KO) N2a cells. Metab Brain Dis 38(7):2301–2313. (PMID: 10.1007/s11011-023-01243-137261632)
Jia Z, Yang M, Zhao Y, Li X, Yang C, Qiao L et al (2023) CRISPR-Cas9-mediated NPC1 gene deletion enhances HEK 293 T cell adhesion by regulating E-Cadherin. Mol Biotechnol 65(2):252–262. (PMID: 10.1007/s12033-022-00503-235587334)
Miyoshi K, Hishinuma E, Matsukawa N, Shirasago Y, Watanabe M, Sato T et al (2023) Global proteomics for identifying the alteration pathway of Niemann-Pick disease Type C using hepatic cell models. Int J Mol Sci 24(21):15642. (PMID: 10.3390/ijms2421156423795862710648601)
Li J, Deffieu MS, Lee PL, Saha P, Pfeffer SR (2015) Glycosylation inhibition reduces cholesterol accumulation in NPC1 protein-deficient cells. Proc Natl Acad Sci USA 112(48):14876–14881. (PMID: 10.1073/pnas.1520490112265788044672801)
Vanharanta L, Peränen J, Pfisterer SG, Enkavi G, Vattulainen I, Ikonen E (2020) High-content imaging and structure-based predictions reveal functional differences between Niemann-Pick C1 variants. Traffic (Copenhagen, Denmark) 21(5):386–397. (PMID: 10.1111/tra.1272732144825)
Llargués-Sistac G, Bonjoch L, Castellvi-Bel S (2023) HAP1, a new revolutionary cell model for gene editing using CRISPR-Cas9. Front Cell Dev Biol 11:1111488. (PMID: 10.3389/fcell.2023.11114883693667810020200)
Erwood S, Brewer RA, Bily TMI, Maino E, Zhou L, Cohn RD et al (2019) Modeling Niemann-Pick disease type C in a human haploid cell line allows for patient variant characterization and clinical interpretation. Genome Res 29(12):2010–2019. (PMID: 10.1101/gr.250720.119317540216886506)
Yamamoto T, Feng JH, Higaki K, Taniguchi M, Nanba E, Ninomiya H et al (2004) Increased NPC1 mRNA in skin fibroblasts from Niemann-Pick disease type C patients. Brain Dev 26(4):245–250. (PMID: 10.1016/S0387-7604(03)00162-115130691)
Gelsthorpe ME, Baumann N, Millard E, Gale SE, Langmade SJ, Schaffer JE et al (2008) Niemann-Pick type C1 I1061T mutant encodes a functional protein that is selected for endoplasmic reticulum-associated degradation due to protein misfolding. J Biol Chem 283(13):8229–8236. (PMID: 10.1074/jbc.M708735200182160172276376)
Lin Y, Cai X, Wang G, Ouyang G, Cao H (2018) Model construction of Niemann-Pick type C disease in zebrafish. Biol Chem 399(8):903–910. (PMID: 10.1515/hsz-2018-011829897878)
Tseng WC, Loeb HE, Pei W, Tsai-Morris CH, Xu L, Cluzeau CV et al (2018) Modeling Niemann-Pick disease type C1 in zebrafish: a robust platform for in vivo screening of candidate therapeutic compounds. Dis Models Mech. https://doi.org/10.1242/dmm.034165. (PMID: 10.1242/dmm.034165)
Millat G, Marçais C, Tomasetto C, Chikh K, Fensom AH, Harzer K et al (2001) Niemann-Pick C1 disease: correlations between NPC1 mutations, levels of NPC1 protein, and phenotypes emphasize the functional significance of the putative sterol-sensing domain and of the cysteine-rich luminal loop. Am J Human Genet 68(6):1373–1385. (PMID: 10.1086/320606)
Park WD, O’Brien JF, Lundquist PA, Kraft DL, Vockley CW, Karnes PS et al (2003) Identification of 58 novel mutations in Niemann-Pick disease type C: correlation with biochemical phenotype and importance of PTC1-like domains in NPC1. Hum Mutat 22(4):313–325. (PMID: 10.1002/humu.1025512955717)
Scott C, Ioannou Y (2004) The NPC1 protein: structure implies function. Biochimica et Biophysica Acta (BBA)—Mol Cell Biol Lipids 1685(1–3):8–13. (PMID: 10.1016/j.bbalip.2004.08.006)
Fernandez-Valero E, Ballart A, Iturriaga C, Lluch M, Macias J, Vanier M et al (2005) Identification of 25 new mutations in 40 unrelated Spanish Niemann-Pick type C patients: genotype-phenotype correlations. Clin Genet 68(3):245–254. (PMID: 10.1111/j.1399-0004.2005.00490.x16098014)
Hashemian S, Eshraghi P, Dilaver N, Galehdari H, Shalbafan B, Vakili R et al (2019) Niemann-Pick diseases: the largest Iranian cohort with genetic analysis. Iranian J Child Neurol 13(2):155–162.
Zhou L, (2019) editor Understanding individual mutations underlying Niemann-Pick disease type C using CRISPR/Cas9-mediated base editing and haploid cell models. Canadian Undergraduate Conference on Healthcare Journal.
Lu A, Hsieh F, Sharma BR, Vaughn SR, Enrich C, Pfeffer SR (2022) CRISPR screens for lipid regulators reveal a role for ER-bound SNX13 in lysosomal cholesterol export. J Cell Biol. https://doi.org/10.1083/jcb.202105060. (PMID: 10.1083/jcb.202105060359760989388202)
Wiweger M, Majewski L, Adamek-Urbanska D, Wasilewska I, Kuznicki J (2021) npc2-deficient zebrafish reproduce neurological and inflammatory symptoms of Niemann-Pick Type C disease. Front Cell Neurosci 15:647860. (PMID: 10.3389/fncel.2021.647860339866468111220)
Erwood S, Bily TMI, Lequyer J, Yan J, Gulati N, Brewer RA et al (2022) Saturation variant interpretation using CRISPR prime editing. Nat Biotechnol 40(6):885–895. (PMID: 10.1038/s41587-021-01201-135190686)
Quelle-Regaldie A, Gandoy-Fieiras N, Rodríguez-Villamayor P, Maceiras S, Losada AP, Folgueira M et al (2023) Severe neurometabolic phenotype in npc1 (-/-) zebrafish with a C-terminal mutation. Front Mol Neurosci 16:1078634. (PMID: 10.3389/fnmol.2023.10786343700878210063808)
فهرسة مساهمة: Keywords: CRISPR/Cas; Mutation; Niemann-Pick C1
المشرفين على المادة: 97C5T2UQ7J (Cholesterol)
0 (Niemann-Pick C1 Protein)
تواريخ الأحداث: Date Created: 20240720 Date Completed: 20240720 Latest Revision: 20240720
رمز التحديث: 20240722
DOI: 10.1007/s11033-024-09801-1
PMID: 39033258
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-4978
DOI:10.1007/s11033-024-09801-1