دورية أكاديمية

Intelligent mutation based evolutionary optimization algorithm for genomics and precision medicine.

التفاصيل البيبلوغرافية
العنوان: Intelligent mutation based evolutionary optimization algorithm for genomics and precision medicine.
المؤلفون: Singh SP; SCSET, Bennett University, Greater Noida, UP, India., Yadav DK; SCSET, Bennett University, Greater Noida, UP, India. dileep252000@gmail.com., Chamran MK; FIT, City University, Petaling Jaya, Malaysia., Perera DG; Department of Electrical & Computer Engineering, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA.
المصدر: Functional & integrative genomics [Funct Integr Genomics] 2024 Jul 22; Vol. 24 (4), pp. 128. Date of Electronic Publication: 2024 Jul 22.
نوع المنشور: Journal Article; Letter
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 100939343 Publication Model: Electronic Cited Medium: Internet ISSN: 1438-7948 (Electronic) Linking ISSN: 1438793X NLM ISO Abbreviation: Funct Integr Genomics Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer, c2000-
مواضيع طبية MeSH: Precision Medicine*/methods , Algorithms* , Genomics*/methods , Mutation*, Humans ; Evolution, Molecular
مستخلص: In this paper, genomics and precision medicine have witnessed remarkable progress with the advent of high-throughput sequencing technologies and advances in data analytics. However, because of the data's great dimensionality and complexity, the processing and interpretation of large-scale genomic data present major challenges. In order to overcome these difficulties, this research suggests a novel Intelligent Mutation-Based Evolutionary Optimization Algorithm (IMBOA) created particularly for applications in genomics and precision medicine. In the proposed IMBOA, the mutation operator is guided by genome-based information, allowing for the introduction of variants in candidate solutions that are consistent with known biological processes. The algorithm's combination of Differential Evolution with this intelligent mutation mechanism enables effective exploration and exploitation of the solution space. Applying a domain-specific fitness function, the system evaluates potential solutions for each generation based on genomic correctness and fitness. The fitness function directs the search toward ideal solutions that achieve the problem's objectives, while the genome accuracy measure assures that the solutions have physiologically relevant genomic properties. This work demonstrates extensive tests on diverse genomics datasets, including genotype-phenotype association studies and predictive modeling tasks in precision medicine, to verify the accuracy of the proposed approach. The results demonstrate that, in terms of precision, convergence rate, mean error, standard deviation, prediction, and fitness cost of physiologically important genomic biomarkers, the IMBOA consistently outperforms other cutting-edge optimization methods.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: (2023) Genome Data Set. https://docs.gdc.cancer.gov/Data/Release_Notes/Data_Release_Notes.
Ahadzadeh B, Abdar M, Safara F, Khosravi A, Menhaj MB, Suganthan PN (2023) SFE: A simple, fast and efficient feature selection algorithm for high-dimensional data. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2023.3238420.
Alharbi F, Vakanski A (2023) Machine learning methods for cancer classification using gene expression data: a review. Bioengineering (Basel) 10(2):173. https://doi.org/10.3390/bioengineering10020173. (PMID: 10.3390/bioengineering1002017336829667)
Andre J, Siarry P, Dognon T (2001) An improvement of the standard genetic algorithm fighting premature convergence in continuous optimization. Adv Eng Softw 32(1):49–60. (PMID: 10.1016/S0965-9978(00)00070-3)
Bastico M, Fernández-García A, Belmonte-Hernández A, Mayoral SU (2023) DrOGA: An Artificial Intelligence Solution for Driver-Status Prediction of Genomics Mutations in Precision Cancer Medicine. IEEE Access 11:37378–37391. https://doi.org/10.1109/ACCESS.2023.3266983. (PMID: 10.1109/ACCESS.2023.3266983)
Chen H, Li S, Li X, Zhao Y, Dong J (2023) A hybrid adaptive Differential Evolution based on Gaussian tail mutation. Eng Appl Artif Intell 119:105739. (PMID: 10.1016/j.engappai.2022.105739)
Cheng L, Zhou JX, Hu X et al (2023) Adaptive differential evolution with fitness-based crossover rate for global numerical optimization. Complex Intell Syst. https://doi.org/10.1007/s40747-023-01159-4. (PMID: 10.1007/s40747-023-01159-4)
Du G, Wu J, Zhang C et al (2023) The whole genomic analysis of the Orf virus strains ORFV-SC and ORFV-SC1 from the Sichuan province and their weak pathological response in rabbits. Funct Integr Genom 23:163. https://doi.org/10.1007/s10142-023-01079-z. (PMID: 10.1007/s10142-023-01079-z)
Gao S, Yu Y, Wang Y, Wang J, Cheng J, Zhou M (2019) Chaotic local search-based differential evolution algorithms for optimization. IEEE Trans Syst Man Cybern: Syst 51(6):3954–3967. (PMID: 10.1109/TSMC.2019.2956121)
Guo T, Yuan Z, Wang T, Zhang J, Tang H, Zhang N, Wang X, Chen S (2023) Integrative analysis of ferroptosis regulators for clinical prognosis based on deep learning and potential chemotherapy sensitivity of prostate cancer. Precis Clin Med.
Ismail AR, Jovanovic S, Ramzan N, Rabah H (2023) ECG classification using an optimal temporal convolutional network for remote health monitoring. Sensors 23(3):1697. https://doi.org/10.3390/s23031697. (PMID: 10.3390/s23031697367727379920651)
Kumar P, Garg V (2023) Advanced Selection Operation for Differential Evolution Algorithm. Design and Applications of Nature Inspired Optimization: Contribution of Women Leaders in the Field. Springer International Publishing, Cham, pp 55–74.
Lee M (2023) Deep learning techniques with genomic data in cancer prognosis: a comprehensive review of the 2021–2023 literature. Biology 12(7):893. https://doi.org/10.3390/biology12070893. (PMID: 10.3390/biology120708933750832610376033)
Lee YJ, Park JH, Lee SH (2022) A Study on the Prediction of Cancer Using Whole-Genome Data and Deep Learning. Int J Mol Sci 23(10396):2022.
Leng et al (2022) A benchmark study of deep learning-based multi-omics data fusion methods for cancer. Genome Biol 23:171.
Li G, Lin Q, Cui L, Du Z, Liang Z, Chen J, Lu N, Ming Z (2016) A novel hybrid differential evolution algorithm with modified CoDE and JADE. Appl Soft Comput 47:577–599. (PMID: 10.1016/j.asoc.2016.06.011)
Liu J, Qu C, Zhang L et al (2023) A new hybrid algorithm for three-stage gene selection based on whale optimization. Sci Rep 13:3783. https://doi.org/10.1038/s41598-023-30862-y. (PMID: 10.1038/s41598-023-30862-y368824469992521)
Mirjalili S, Saremi S, Mirjalili SM, dos S. Coelho L (2016) Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert Syst Appl.
Mokoatle M, Marivate V, Mapiye D et al (2023) A review and comparative study of cancer detection using machine learning: SBERT and SimCSE application. BMC Bioinform 24:112. https://doi.org/10.1186/s12859-023-05235-x. (PMID: 10.1186/s12859-023-05235-x)
Ordon J, Bressan M, Kretschmer C et al (2020) Optimized Cas9 expression systems for highly efficient Arabidopsis genome editing facilitate the isolation of complex alleles in a single generation. Funct Integr Genom 20:151–162. https://doi.org/10.1007/s10142-019-00665-4. (PMID: 10.1007/s10142-019-00665-4)
Ramirez R, Chiu YC, Zhang SY, Ramirez J, Chen Y, Huang Y, Jin YF (2021) Prediction and interpretation of cancer survival using graph convolution neural networks. Methods 2021(192):120–130. (PMID: 10.1016/j.ymeth.2021.01.004)
Rostami M, Berahmand K, Forouzandeh S (2021) A novel community detection based genetic algorithm for feature selection. J Big Data 8:2. https://doi.org/10.1186/s40537-020-00398-3.
Saravanan M, Madheswaran M (2014) A hybrid optimized weighted minimum spanning tree for the shortest intrapath selection in wireless sensor network. Math Probl Eng 2014:1–8. (PMID: 10.1155/2014/713427)
Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: The NCBI database of Genetic Variation. Nucleic Acids Res 29:308–311. https://doi.org/10.1093/nar/29.1.308. (PMID: 10.1093/nar/29.1.3081112512229783)
Shi L, Zhang Y, Wang H (2023) Prognostic prediction based on histopathologic features of tumor microenvironment in colorectal cancer. Front Med 2023.
Singh SP, Kumar A (2017a) Software cost estimation using homeostasis mutation-based differential evolution. In: 2017 11th International conference on intelligent systems and control (ISCO), pp 173–181. IEEE.
Singh SP, Kumar A (2017b) Homeostasis mutation-based differential evolution algorithm. J Intell Fuzzy Syst 32(5):3525–3537.
Singh SP, Singh, VP, Mehta AK (2018) Differential evolution using homeostasis adaption based mutation operator and its application for software cost estimation. J King Saud Univ-Comput Inf Sci.
Singh SP, Kumar A (2018) Multiobjective differential evolution using homeostasis based mutation for application in software cost estimation. Appl Intell 48(3):628–650. (PMID: 10.1007/s10489-017-0980-6)
Singh SP, Kumar A (2018) Multiobjective differential evolution using homeostasis-based mutation for application in software cost estimation. Appl Intell 48:628–650. (PMID: 10.1007/s10489-017-0980-6)
Storn R (1995) Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report, International Computer Science Institute, p 11.
Sugavaneshwari P, Saranya KG (2023) A study on machine learning techniques for precision medicine recommendation. 2023 International conference on intelligent systems for communication, IoT and security (ICISCoIS), Coimbatore, India, pp 365–370. https://doi.org/10.1109/ICISCoIS56541.2023.10100600.
Swain AK, Pandey P, Sera R et al (2023) Single-cell transcriptome analysis identifies novel biomarkers involved in major liver cancer subtypes. Funct Integr Genom 23:235. https://doi.org/10.1007/s10142-023-01156-3. (PMID: 10.1007/s10142-023-01156-3)
Tawhid M, Ibrahim A (2020) A hybridization of grey wolf optimizer and differential evolution for solving nonlinear systems. Evol Syst 11. https://doi.org/10.1007/s12530-019-09291-8.
Wang J, Zhang R, Ding G et al (2023) Comparative genomic analysis of five coprinoid mushroom species. Funct Integr Genom 23:159. https://doi.org/10.1007/s10142-023-01094-0. (PMID: 10.1007/s10142-023-01094-0)
Zenbout I, Bouramoul A, Meshoul S, Amrane M (2023) Efficient Bioinspired Feature Selection and Machine Learning Based Framework Using Omics Data and Biological Knowledge Data Bases in Cancer Clinical Endpoint Prediction. IEEE Access 11:2674–2699. https://doi.org/10.1109/ACCESS.2023.3234294. (PMID: 10.1109/ACCESS.2023.3234294)
فهرسة مساهمة: Keywords: Cancer precision; Evolutionary algorithms; Genome data sets; Intelligent mutation
تواريخ الأحداث: Date Created: 20240722 Date Completed: 20240722 Latest Revision: 20240722
رمز التحديث: 20240722
DOI: 10.1007/s10142-024-01401-3
PMID: 39037544
قاعدة البيانات: MEDLINE
الوصف
تدمد:1438-7948
DOI:10.1007/s10142-024-01401-3