دورية أكاديمية

Determination of prebiotic activity and probiotic encapsulation ability of inulin type fructans obtained from Inula helenium roots.

التفاصيل البيبلوغرافية
العنوان: Determination of prebiotic activity and probiotic encapsulation ability of inulin type fructans obtained from Inula helenium roots.
المؤلفون: Meral HD; Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey., Özcan FŞ; TUBITAK Marmara Research Centre, Life Sciences, Kocaeli, Turkey., Özcan N; TUBITAK Marmara Research Centre, Life Sciences, Kocaeli, Turkey., Bozkurt F; Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey., Sağdiç O; Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey.
المصدر: Journal of food science [J Food Sci] 2024 Jul 23. Date of Electronic Publication: 2024 Jul 23.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley on behalf of the Institute of Food Technologists Country of Publication: United States NLM ID: 0014052 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1750-3841 (Electronic) Linking ISSN: 00221147 NLM ISO Abbreviation: J Food Sci Subsets: MEDLINE
أسماء مطبوعة: Publication: Malden, Mass. : Wiley on behalf of the Institute of Food Technologists
Original Publication: Champaign, Ill. Institute of Food Technologists
مستخلص: Inulin, a prebiotic utilized in the food and pharmaceutical industries, promotes the growth of beneficial bacteria in the colon, thereby enhancing human health. Although inulin is commercially produced from chicory and artichoke, Inula helenium roots offer a high potential for inulin production. The aim of this study is to investigate the prebiotic activity of inulin (inulin-P) from I. helenium roots on Lactobacillus rhamnosus, as well as its ability to produce synbiotic microcapsules and the effects on probiotic viability during freeze-drying, in vitro gastrointestinal (GI) digestion, and storage. First, the effect of inulin-P on L. rhamnosus viability and short-chain fatty acid (SCFA) production was compared to other commonly utilized prebiotics. The findings revealed that inulin-P remarkably promoted the growth and SCFA yield of L. rhamnosus for 48 h of fermentation and 28 days of storage. Then, L. rhamnosus was encapsulated with inulin-P and commercial inulin to compare its survival throughout storage and the GI tract. Inulin-P microcapsules outperformed in terms of viability during storage (7.98 log CFU/g after 30 days at 4°C). Furthermore, inulin-P microcapsules were heat-resistant and protected L. rhamnosus from GI conditions, resulting in a high survival rate (89.52%) following large intestine simulation, which is ideal for increasing customer benefits. Additionally, inulin-P microcapsules exhibited similar physical characteristics to commercial inulin. Consequently, this study revealed that inulin-P, which is easy to produce, low-cost, and has industrial application potential, could be used as a good carrier for the synbiotic encapsulation of L. rhamnosus. PRACTICAL APPLICATION: Inulin is a prebiotic that promotes the activity and growth of beneficial bacteria in the human gut. Although commercial inulin is currently produced from chicory root and artichoke, Inula helenium root is a potential raw material for inulin production. In this study, inulin was produced from I. helenium roots with a low-cost and easy production method, and it was determined that this inulin was an effective carrier in the synbiotic encapsulation of L. rhamnosus. This inulin exhibits superior prebiotic activity and encapsulation efficiency compared to commercial inulins like Orafti ® GR and HPX and can be easily integrated into industrial production.
(© 2024 The Author(s). Journal of Food Science published by Wiley Periodicals LLC on behalf of Institute of Food Technologists.)
References: Almasi, H., Azizi, S., & Amjadi, S. (2020). Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocolloids, 99, 105338. https://doi.org/10.1016/j.foodhyd.2019.105338.
Amiri, S., Rezaei Mokarram, R., Sowti Khiabani, M., Rezazadeh Bari, M., & Alizadeh Khaledabad, M. (2019). Exopolysaccharides production by Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12: Optimization of fermentation variables and characterization of structure and bioactivities. International Journal of Biological Macromolecules, 123, 752–765. https://doi.org/10.1016/j.ijbiomac.2018.11.084.
Angélica Andrade Lopes, L., de Siqueira Ferraz Carvalho, R., Stela Santos Magalhães, N., Suely Madruga, M., Julia Alves Aguiar Athayde, A., Araújo Portela, I., Eduardo Barão, C., Colombo Pimentel, T., Magnani, M., & Christina Montenegro Stamford, T. (2020). Microencapsulation of Lactobacillus acidophilus La‐05 and incorporation in vegan milks: Physicochemical characteristics and survival during storage, exposure to stress conditions, and simulated gastrointestinal digestion. Food Research International, 135, 109295. https://doi.org/10.1016/j.foodres.2020.109295.
Arslan‐Tontul, S., & Erbas, M. (2017). Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT, 81, 160–169. https://doi.org/10.1016/j.lwt.2017.03.060.
Ashwar, B. A., Gani, A., Gani, A., Shah, A., & Masoodi, F. A. (2018). Production of RS4 from rice starch and its utilization as an encapsulating agent for targeted delivery of probiotics. Food Chemistry, 239, 287–294. https://doi.org/10.1016/j.foodchem.2017.06.110.
Azam, M., Saeed, M., Pasha, I., & Shahid, M. (2020). A prebiotic‐based biopolymeric encapsulation system for improved survival of Lactobacillus rhamnosus. Food Bioscience, 37, 100679. https://doi.org/10.1016/j.fbio.2020.100679.
Azizi, S., Rezazadeh‐Bari, M., Almasi, H., & Amiri, S. (2021). Microencapsulation of Lactobacillus rhamnosus using sesame protein isolate: Effect of encapsulation method and transglutaminase: Microencapsulated L. rhamnosus using sesame protein. Food Bioscience, 41, 101012. https://doi.org/10.1016/j.fbio.2021.101012.
Ballesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., & Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze‐drying and spray‐drying using different coating materials. Food Chemistry, 237, 623–631. https://doi.org/10.1016/j.foodchem.2017.05.142.
Baysan, S., Kabadurmus, O., Cevikcan, E., Satoglu, S. I., & Durmusoglu, M. B. (2019). A simulation‐based methodology for the analysis of the effect of lean tools on energy efficiency: An application in power distribution industry. Journal of Cleaner Production, 211, 895–908. https://doi.org/10.1016/j.jclepro.2018.11.217.
Beirão‐da‐Costa, S., Duarte, C., Bourbon, A. I., Pinheiro, A. C., Januário, M. I. N., Vicente, A. A., Beirão‐da‐Costa, M. L., & Delgadillo, I. (2013). Inulin potential for encapsulation and controlled delivery of oregano essential oil. Food Hydrocolloids, 33(2), 199–206. https://doi.org/10.1016/j.foodhyd.2013.03.009.
Calabuig‐Jiménez, L., Betoret, E., Betoret, N., Patrignani, F., Barrera, C., Seguí, L., Lanciotti, R., & Dalla Rosa, M. (2019). High pressures homogenization (HPH) to microencapsulate L. salivarius spp. salivarius in mandarin juice. Probiotic survival and in vitro digestion. Journal of Food Engineering, 240, 43–48. https://doi.org/10.1016/j.jfoodeng.2018.07.012.
Chambers, E. S., Preston, T., Frost, G., & Morrison, D. J. (2018). Role of gut microbiota‐generated short‐chain fatty acids in metabolic and cardiovascular health. Current Nutrition Reports, 7(4), 198–206. https://doi.org/10.1007/s13668‐018‐0248‐8.
Champagne, C. P., Gomes da Cruz, A., & Daga, M. (2018). Strategies to improve the functionality of probiotics in supplements and foods. Current Opinion in Food Science, 22, 160–166. https://doi.org/10.1016/j.cofs.2018.04.008.
Costa, N. A., Silveira, L. R., Amaral, E. P., Pereira, G. C., Paula, D. A., Vieira, É. N. R., Martins, E. M. F., Stringheta, P. C., Leite Júnior, B. R. C., & Ramos, A. M. (2023). Use of maltodextrin, sweet potato flour, pectin and gelatin as wall material for microencapsulating Lactiplantibacillus plantarum by spray drying: Thermal resistance, in vitro release behavior, storage stability and physicochemical properties. Food Research International, 164, 112367. https://doi.org/10.1016/j.foodres.2022.112367.
de Castro‐Cislaghi, F. P., Silva, C. D. R. E., Fritzen‐Freire, C. B., Lorenz, J. G., & Sant'Anna, E. S. (2012). Bifidobacterium Bb‐12 microencapsulated by spray drying with whey: Survival under simulated gastrointestinal conditions, tolerance to NaCl, and viability during storage. Journal of Food Engineering, 113(2), 186–193. https://doi.org/10.1016/j.jfoodeng.2012.06.006.
Duman, D., & Karadag, A. (2021). Inulin added electrospun composite nanofibres by electrospinning for the encapsulation of probiotics: Characterisation and assessment of viability during storage and simulated gastrointestinal digestion. International Journal of Food Science and Technology, 56(2), 927–935. https://doi.org/10.1111/ijfs.14744.
Dyakova, N. A., Gaponov, S. P., Slivkin, A. I., Belenova, A. S., Karlov, P. M., & Lavrov, S. V. (2021). Elaboration of an express technique for inulin extraction from the roots of elecampane (Inula helenium L.). IOP Conference Series: Earth and Environmental Science, 640(5), 052021. https://doi.org/10.1088/1755‐1315/640/5/052021.
Eroglu, E., & Ozcan, T. (2023). Pro‐pre and postbiotic fermentation of the dietetic dairy matrix with prebiotic sugar replacers. Probiotics and Antimicrobial Proteins, 16, 726–736. https://doi.org/10.1007/s12602‐023‐10069‐3.
Falony, G., Lazidou, K., Verschaeren, A., Weckx, S., Maes, D., & de Vuyst, L. (2009). In vitro kinetic analysis of fermentation of prebiotic inulin‐type fructans by Bifidobacterium species reveals four different phenotypes. Applied and Environmental Microbiology, 75(2), 454–461. https://doi.org/10.1128/AEM.01488‐08.
Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols—A review. Trends in Food Science and Technology, 21(10), 510–523. https://doi.org/10.1016/j.tifs.2010.08.003.
Gao, H., Ma, L., Sun, W., McClements, D. J., Cheng, C., Zeng, H., Zou, L., & Liu, W. (2022). Impact of encapsulation of probiotics in oil‐in‐water high internal phase emulsions on their thermostability and gastrointestinal survival. Food Hydrocolloids, 126, 107478. https://doi.org/10.1016/j.foodhyd.2021.107478.
Gavlighi, H. A., Michalak, M., Meyer, A. S., & Mikkelsen, J. D. (2013). Enzymatic depolymerization of gum tragacanth: Bifidogenic potential of low molecular weight oligosaccharides. Journal of Agricultural and Food Chemistry, 61(6), 1272–1278. https://doi.org/10.1021/jf304795f.
Gholam‐Zhiyan, A., Amiri, S., Rezazadeh‐Bari, M., & Pirsa, S. (2021). Stability of Bacillus coagulans IBRC‐M 10807 and Lactobacillus plantarum PTCC 1058 in milk proteins concentrate (MPC)‐based edible film. Journal of Packaging Technology and Research, 5(1), 11–22. https://doi.org/10.1007/s41783‐021‐00106‐3.
Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. Journal of Nutrition, 125(6), 1401–1412. https://doi.org/10.1093/jn/125.6.1401.
Grand View Research. (2022). Prebiotics market size, share & trends analysis report by ingredients (FOS, inulin, GOS, MOS), by application (food & beverages, dietary supplements, animal feed), by region, and segment forecasts, 2022–2030. Available online: https://www.grandviewresearch.com/industry-analysis/prebiotics-market. (accessed on 3 June 2024).
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology, 11(8), 506–514. https://doi.org/10.1038/nrgastro.2014.66.
Huang, X., Liu, R., Wang, J., Bao, Y., Yi, H., Wang, X., & Lu, Y. (2024). Preparation and synbiotic interaction mechanism of microcapsules of Bifidobacterium animalis F1–7 and human milk oligosaccharides (HMO). International Journal of Biological Macromolecules, 259(P1), 129152. https://doi.org/10.1016/j.ijbiomac.2023.129152.
Huebner, J., Wehling, R. L., & Hutkins, R. W. (2007). Functional activity of commercial prebiotics. International Dairy Journal, 17(7), 770–775. https://doi.org/10.1016/j.idairyj.2006.10.006.
Ibrahem, A. A., Al‐Shawi, S. G., & Al‐Temimi, W. K. A. (2024). The antagonistic activity of the synbiotic containing Lactobacillus acidophilus and pineapple residue FOS against pathogenic bacteria. Brazilian Journal of Biology, 84, 1–7. https://doi.org/10.1590/1519‐6984.258277.
Khosravi Zanjani, M. A., Tarzi, B. G., Sharifan, A., & Mohammadi, N. (2014). Microencapsulation of probiotics by calcium alginate‐gelatinized starch with chitosan coating and evaluation of survival in simulated human gastro‐intestinal condition. Iranian Journal of Pharmaceutical Research, 13(3), 843–852.
Korbelik, M., & Cooper, P. D. (2007). Potentiation of photodynamic therapy of cancer by complement: The effect of γ‐inulin. British Journal of Cancer, 96(1), 67–72. https://doi.org/10.1038/sj.bjc.6603508.
Lee, Y., Kang, Y. R., & Chang, Y. H. (2023). Effect of pectic oligosaccharide on probiotic survival and physicochemical properties of hydrogel beads for synbiotic encapsulation of Lactobacillus bulgaricus. Food Bioscience, 51, 102260. https://doi.org/10.1016/j.fbio.2022.102260.
Liang, Y., Liang, S., Zhang, Y., Deng, Y., He, Y., Chen, Y., Liu, C., Lin, C., & Yang, Q. (2019). Oral administration of compound probiotics ameliorates HFD‐induced gut microbe dysbiosis and chronic metabolic inflammation via the G protein‐coupled receptor 43 in non‐alcoholic fatty liver disease rats. Probiotics and Antimicrobial Proteins, 11(1), 175–185. https://doi.org/10.1007/s12602‐017‐9378‐3.
Luca, L., & Oroian, M. (2021). Influence of different prebiotics on viability of Lactobacillus casei, Lactobacillus plantarum and Lactobacillus rhamnosus encapsulated in alginate microcapsules. Foods, 10(4), 710. https://doi.org/10.3390/foods10040710.
Markowiak‐Kope, P., & Slizewska, K. (2020). The effect of probiotics on the production of short‐chain fatty acids by human intestinal microbiome. Nutrients, 12(1107), 1–23.
Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., MacIerzanka, A., MacKie, A., … Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food‐an international consensus. Food and Function, 5(6), 1113–1124. https://doi.org/10.1039/c3fo60702j.
Misra, S., Mandliya, S., Pandey, P., Panigrahi, C., Dalbhagat, C. G., & Mishra, H. N. (2023). Effect of spray‐ and freeze‐dried microcapsules containing probiotics and γ‐aminobutyric acid on nutritional, physicochemical, textural, pasting, rheological, and microstructural characteristics of composite dough. Food and Bioprocess Technology, 17, 464–478. https://doi.org/10.1007/s11947‐023‐03144‐8.
Moayyedi, M., Eskandari, M. H., Rad, A. H. E., Ziaee, E., Khodaparast, M. H. H., & Golmakani, M. T. (2018). Effect of drying methods (electrospraying, freeze drying and spray drying) on survival and viability of microencapsulated Lactobacillus rhamnosus ATCC 7469. Journal of Functional Foods, 40, 391–399. https://doi.org/10.1016/j.jff.2017.11.016.
Munin, A., & Edwards‐Lévy, F. (2011). Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics, 3(4), 793–829. https://doi.org/10.3390/pharmaceutics3040793.
Onrust, L., van Driessche, K., Ducatelle, R., Schwarzer, K., Haesebrouck, F., & van Immerseel, F. (2018). Valeric acid glyceride esters in feed promote broiler performance and reduce the incidence of necrotic enteritis. Poultry Science, 97(7), 2303–2311. https://doi.org/10.3382/ps/pey085.
Özer, D., Akin, S., & Özer, B. (2005). Effect of inulin and lactulose on survival of Lactobacillus acidophilus LA‐5 and Bifidobacterium bifidum BB‐02 in acidophilus‐bifidus yoghurt. Food Science and Technology International, 11(1), 19–24. https://doi.org/10.1177/1082013205051275.
Özkan, G., & Ersus Bilek, S. (2014). Microencapsulation of natural food colourants. International Journal of Nutrition and Food Sciences, 3(3), 145. https://doi.org/10.11648/j.ijnfs.20140303.13.
Pashazadeh, H., Zannou, O., Ghellam, M., Koca, I., Galanakis, C. M., & Aldawoud, T. M. S. (2021). Optimization and encapsulation of phenolic compounds extracted from maize waste by freeze‐drying, spray‐drying, and microwave‐drying using maltodextrin. Foods, 10(6), 1396. https://doi.org/10.3390/foods10061396.
Petkova, N. T., Ognyanov, M., Todorova, M., & Denev, P. (2015). Ultrasound‐assisted extraction and characterisation of inulin‐type fructan from roots of elecampane (Inula helenium L.). Acta Scientifica Naturalis, 1(2), 225–235. http://www.researchgate.net/publication/278783674_Ultrasound‐assisted_extraction_and_characterisation_of_inulin‐type_fructan_from_roots_of_elecampane_(Inula_helenium_L.).
Pohlentz, J. C., Gallala, N., Kosciow, K., & Hövels, M. (2022). Growth behavior of probiotic microorganisms on levan‐ and inulin‐based fructans. Journal of Functional Foods, 99, 105343. https://doi.org/10.1016/j.jff.2022.105343.
Ranadheera, C. S., Naumovski, N., & Ajlouni, S. (2018). Non‐bovine milk products as emerging probiotic carriers: Recent developments and innovations. Current Opinion in Food Science, 22, 109–114. https://doi.org/10.1016/j.cofs.2018.02.010.
Rashidinejad, A., Bahrami, A., Rehman, A., Rezaei, A., Babazadeh, A., Singh, H., & Jafari, S. M. (2022). Co‐encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Critical Reviews in Food Science and Nutrition, 62(9), 2470–2494. https://doi.org/10.1080/10408398.2020.1854169.
Rossi, M., Corradini, C., Amaretti, A., Nicolini, M., Pompei, A., Zanoni, S., & Matteuzzi, D. (2005). Fermentation of fructooligosaccharides and inulin by bifidobacteria: A comparative study of pure and fecal cultures. Applied and Environmental Microbiology, 71(10), 6150–6158. https://doi.org/10.1128/AEM.71.10.6150‐6158.2005.
Rubel, I. A., Iraporda, C., Novosad, R., Cabrera, F. A., Genovese, D. B., & Manrique, G. D. (2018). Inulin rich carbohydrates extraction from Jerusalem artichoke (Helianthus tuberosus L.) tubers and application of different drying methods. Food Research International, 103, 226–233. https://doi.org/10.1016/j.foodres.2017.10.041.
Sanchez, V., Baeza, R., Galmarini, M. V., Zamora, M. C., & Chirife, J. (2013). Freeze‐drying encapsulation of red wine polyphenols in an amorphous matrix of maltodextrin. Food and Bioprocess Technology, 6(5), 1350–1354. https://doi.org/10.1007/s11947‐011‐0654‐z.
Scott, K. P., Martin, J. C., Duncan, S. H., & Flint, H. J. (2014). Prebiotic stimulation of human colonic butyrate‐producing bacteria and bifidobacteria, in vitro. FEMS Microbiology Ecology, 87(1), 30–40. https://doi.org/10.1111/1574‐6941.12186.
Silva, D. G., Cooper, P. D., & Petrovsky, N. (2004). Inulin‐derived adjuvants efficiently promote both Th1 and Th2 immune responses. Immunology and Cell Biology, 82(6), 611–616. https://doi.org/10.1111/j.1440‐1711.2004.01290.x.
Subin, S. R., Okolie, C. L., Udenigwe, C. C., & Mason, B. (2017). Structural features underlying prebiotic activity of conventional and potential prebiotic oligosaccharides in food and health. Journal of Food Biochemistry, 41(5), 1–19. https://doi.org/10.1111/jfbc.12389.
Swanson, K. S., Gibson, G. R., Hutkins, R., Reimer, R. A., Reid, G., Verbeke, K., Scott, K. P., Holscher, H. D., Azad, M. B., Delzenne, N. M., & Sanders, M. E. (2020). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nature Reviews Gastroenterology and Hepatology, 17(11), 687–701. https://doi.org/10.1038/s41575‐020‐0344‐2.
Tarifa, M. C., Piqueras, C. M., Genovese, D. B., & Brugnoni, L. I. (2021). Microencapsulation of Lactobacillus casei and Lactobacillus rhamnosus in pectin and pectin‐inulin microgel particles: Effect on bacterial survival under storage conditions. International Journal of Biological Macromolecules, 179, 457–465. https://doi.org/10.1016/j.ijbiomac.2021.03.038.
Vanden Braber, N. L., Díaz Vergara, L. I., Rossi, Y. E., Aminahuel, C. A., Mauri, A. N., Cavaglieri, L. R., & Montenegro, M. A. (2020). Effect of microencapsulation in whey protein and water‐soluble chitosan derivative on the viability of the probiotic Kluyveromyces marxianus VM004 during storage and in simulated gastrointestinal conditions. LWT, 118, 108844. https://doi.org/10.1016/j.lwt.2019.108844.
Wang, S., Pan, J., Zhang, Z., & Yan, X. (2020). Investigation of dietary fructooligosaccharides from different production methods: Interpreting the impact of compositions on probiotic metabolism and growth. Journal of Functional Foods, 69, 103955. https://doi.org/10.1016/j.jff.2020.103955.
Wu, Y., & Zhang, G. (2018). Synbiotic encapsulation of probiotic Latobacillus plantarum by alginate ‐arabinoxylan composite microspheres. LWT, 93, 135–141. https://doi.org/10.1016/j.lwt.2018.03.034.
Yoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020). Effect of encapsulation methods on the physicochemical properties and the stability of Lactobacillus plantarum (NCIM 2083) in synbiotic powders and in‐vitro digestion conditions. Journal of Food Engineering, 283, 110033. https://doi.org/10.1016/j.jfoodeng.2020.110033.
Yuille, S., Reichardt, N., Panda, S., Dunbar, H., & Mulder, I. E. (2018). Human gut bacteria as potent class I histone deacetylase inhibitors in vitro through production of butyric acid and valeric acid. PLoS ONE, 13(7), 1–12. https://doi.org/10.1371/journal.pone.0201073.
Zhang, Y., Lin, J., & Zhong, Q. (2015). The increased viability of probiotic Lactobacillus salivarius NRRL B‐30514 encapsulated in emulsions with multiple lipid‐protein‐pectin layers. Food Research International, 71, 9–15. https://doi.org/10.1016/j.foodres.2015.02.017.
Zhu, Z., He, J., Liu, G., Barba, F. J., Koubaa, M., Ding, L., Bals, O., Grimi, N., & Vorobiev, E. (2016). Recent insights for the green recovery of inulin from plant food materials using non‐conventional extraction technologies: A review. Innovative Food Science and Emerging Technologies, 33, 1–9. https://doi.org/10.1016/j.ifset.2015.12.023.
معلومات مُعتمدة: Türkiye Bilimsel ve Teknolojik Araştirma Kurumu; 121N195 Scientific and Technological Research Council of Turkey (TUBİTAK)
فهرسة مساهمة: Keywords: bioavailability; microencapsulation; prebiotic activity; probiotic
تواريخ الأحداث: Date Created: 20240723 Latest Revision: 20240723
رمز التحديث: 20240725
DOI: 10.1111/1750-3841.17261
PMID: 39042555
قاعدة البيانات: MEDLINE
الوصف
تدمد:1750-3841
DOI:10.1111/1750-3841.17261