دورية أكاديمية

Shifts in receptors during submergence of an encephalitic arbovirus.

التفاصيل البيبلوغرافية
العنوان: Shifts in receptors during submergence of an encephalitic arbovirus.
المؤلفون: Li W; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA., Plante JA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA., Lin C; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA., Basu H; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA., Plung JS; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA., Fan X; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA., Boeckers JM; Department of Neurology, F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA., Oros J; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA., Buck TK; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA., Anekal PV; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.; MicRoN Core, Harvard Medical School, Boston, MA, USA., Hanson WA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA., Varnum H; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA., Wells A; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.; MicRoN Core, Harvard Medical School, Boston, MA, USA., Mann CJ; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA., Tjang LV; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA., Yang P; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA., Reyna RA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA., Mitchell BM; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA., Shinde DP; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA., Walker JL; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA., Choi SY; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA., Brusic V; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA., Llopis PM; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.; MicRoN Core, Harvard Medical School, Boston, MA, USA., Weaver SC; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA., Umemori H; Department of Neurology, F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA., Chiu IM; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA., Plante KS; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA., Abraham J; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA. jonathan_abraham@hms.harvard.edu.; Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA. jonathan_abraham@hms.harvard.edu.; Center for Integrated Solutions in Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, USA. jonathan_abraham@hms.harvard.edu.
المصدر: Nature [Nature] 2024 Aug; Vol. 632 (8025), pp. 614-621. Date of Electronic Publication: 2024 Jul 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Encephalitis Virus, Western Equine*/classification , Encephalitis Virus, Western Equine*/metabolism , Encephalitis Virus, Western Equine*/pathogenicity , Host Specificity* , Protocadherins*/metabolism , Receptors, Virus*/metabolism, Animals ; Female ; Humans ; Male ; Mice ; Birds/metabolism ; Birds/virology ; Communicable Diseases, Emerging/epidemiology ; Communicable Diseases, Emerging/virology ; Encephalomyelitis, Equine/epidemiology ; Encephalomyelitis, Equine/virology ; LDL-Receptor Related Proteins/metabolism ; Neurons/metabolism ; Neurons/virology ; Phenotype ; Receptors, LDL/metabolism ; Receptors, LDL/genetics ; Viral Envelope Proteins/metabolism ; Viral Zoonoses/epidemiology ; Viral Zoonoses/virology
مستخلص: Western equine encephalitis virus (WEEV) is an arthropod-borne virus (arbovirus) that frequently caused major outbreaks of encephalitis in humans and horses in the early twentieth century, but the frequency of outbreaks has since decreased markedly, and strains of this alphavirus isolated in the past two decades are less virulent in mammals than strains isolated in the 1930s and 1940s 1-3 . The basis for this phenotypic change in WEEV strains and coincident decrease in epizootic activity (known as viral submergence 3 ) is unclear, as is the possibility of re-emergence of highly virulent strains. Here we identify protocadherin 10 (PCDH10) as a cellular receptor for WEEV. We show that multiple highly virulent ancestral WEEV strains isolated in the 1930s and 1940s, in addition to binding human PCDH10, could also bind very low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2), which are recognized by another encephalitic alphavirus as receptors 4 . However, whereas most of the WEEV strains that we examined bind to PCDH10, a contemporary strain has lost the ability to recognize mammalian PCDH10 while retaining the ability to bind avian receptors, suggesting WEEV adaptation to a main reservoir host during enzootic circulation. PCDH10 supports WEEV E2-E1 glycoprotein-mediated infection of primary mouse cortical neurons, and administration of a soluble form of PCDH10 protects mice from lethal WEEV challenge. Our results have implications for the development of medical countermeasures and for risk assessment for re-emerging WEEV strains.
(© 2024. The Author(s).)
References: Bergren, N. A. et al. Western equine encephalitis virus: evolutionary analysis of a declining alphavirus based on complete genome sequences. J. Virol. 88, 9260–9267 (2014). (PMID: 24899192413628510.1128/JVI.01463-14)
Logue, C. H. et al. Virulence variation among isolates of Western equine encephalitis virus in an outbred mouse model. J. Gen. Virol. 90, 1848–1858 (2009). (PMID: 19403754288757410.1099/vir.0.008656-0)
Bergren, N. A. et al. Submergence of Western equine encephalitis virus: evidence of positive selection argues against genetic drift and fitness reductions. PLoS Pathog. 16, e1008102 (2020). (PMID: 32027727702987710.1371/journal.ppat.1008102)
Clark, L. E. et al. VLDLR and ApoER2 are receptors for multiple alphaviruses. Nature 602, 475–480 (2022). (PMID: 3492972110.1038/s41586-021-04326-0)
Arechiga-Ceballos, N. & Aguilar-Setien, A. Alphaviral equine encephalomyelitis (Eastern, Western and Venezuelan). Rev. Sci. Tech. 34, 491–501 (2015). (PMID: 2660145110.20506/rst.34.2.2374)
Ronca, S. E., Dineley, K. T. & Paessler, S. Neurological sequelae resulting from encephalitic alphavirus infection. Front. Microbiol. 7, 959 (2016). (PMID: 27379085491309210.3389/fmicb.2016.00959)
Griffin, D. E. in Fields Virology, 6th Edn 651–686 (Lippincott Williams and Wilkins, 2013).
Steele, K. E. & Twenhafel, N. A. Pathology of animal models of alphavirus encephalitis. Vet. Pathol. 47, 790–805 (2010). (PMID: 2055147510.1177/0300985810372508)
Azar, S. R., Campos, R. K., Bergren, N. A., Camargos, V. N. & Rossi, S. L. Epidemic alphaviruses: ecology, emergence and outbreaks. Microorganisms 8, 1167 (2020). (PMID: 32752150746472410.3390/microorganisms8081167)
Reisen, W. K. & Wheeler, S. S. Surveys for antibodies against mosquitoborne encephalitis viruses in California birds, 1996–2013. Vector Borne Zoonotic Dis. 16, 264–282 (2016). (PMID: 26974395480026910.1089/vbz.2015.1888)
Nagata, L. P. et al. Infectivity variation and genetic diversity among strains of Western equine encephalitis virus. J. Gen. Virol. 87, 2353–2361 (2006). (PMID: 1684713110.1099/vir.0.81815-0)
Secretario de Bioeconomia. Encefalomielitis equinas. Estado Argentino https://www.argentina.gob.ar/senasa/encefalomielitis-equinas (2023).
Pauvolid-Correa, A. et al. Neutralising antibodies for Mayaro virus in Pantanal, Brazil. Mem. Inst. Oswaldo Cruz 110, 125–133 (2015). (PMID: 25742272437122610.1590/0074-02760140383)
Delfraro, A. et al. Fatal human case of Western equine encephalitis, Uruguay. Emerg. Infect. Dis. 17, 952–954 (2011). (PMID: 21529429332176410.3201/eid1705.101068)
12/03/2024 - Informe de Situación Actualizado de Encefalomielitis en Uruguay (Ministerio de Ganadería, Agricultura y Pesca, Uruguay, 2024); https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/comunicacion/noticias/12032024-informe-situacion-actualizado-encefalomielitis-uruguay .
Boletín Epidemiológico Nacional N 697 SE 12 | 2024 (Ministerio de Salud, Republica Argentina, 2024); https://www.argentina.gob.ar/salud/boletin-epidemiologico-nacional/boletines-2024 .
Reporte semanal sobre Encefalitis Equina - 26/3/2024 (Ministerio de Salud Pública, Uruguay, 2024); https://www.gub.uy/ministerio-salud-publica/comunicacion/publicaciones/reporte-semanal-sobre-encefalitis-equina-2632024 .
Mossel, E. C. et al. Molecular determinants of mouse neurovirulence and mosquito infection for Western equine encephalitis virus. PLoS ONE 8, e60427 (2013). (PMID: 23544138360975710.1371/journal.pone.0060427)
Netolitzky, D. J. et al. Complete genomic RNA sequence of western equine encephalitis virus and expression of the structural genes. J. Gen. Virol. 81, 151–159 (2000). (PMID: 10640553)
Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014). (PMID: 25476604429082410.1186/s13059-014-0554-4)
Hoshina, N. et al. ASD/OCD-linked protocadherin-10 regulates synapse, but not axon, development in the amygdala and contributes to fear- and anxiety-related behaviors. J. Neurosci. 42, 4250–4266 (2022). (PMID: 35504727914524310.1523/JNEUROSCI.1843-21.2022)
Tsai, N. P. et al. Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell 151, 1581–1594 (2012). (PMID: 23260144353017110.1016/j.cell.2012.11.040)
Wolverton, T. & Lalande, M. Identification and characterization of three members of a novel subclass of protocadherins. Genomics 76, 66–72 (2001). (PMID: 1154931810.1006/geno.2001.6592)
Zhen, Y., Pavez, M. & Li, X. The role of Pcdh10 in neurological disease and cancer. J. Cancer Res. Clin. Oncol. 149, 8153–8164 (2023). (PMID: 370582521037475510.1007/s00432-023-04743-w)
Morrow, E. M. et al. Identifying autism loci and genes by tracing recent shared ancestry. Science 321, 218–223 (2008). (PMID: 18621663258617110.1126/science.1157657)
Ma, H. et al. LDLRAD3 is a receptor for Venezuelan equine encephalitis virus. Nature 588, 308–314 (2020). (PMID: 33208938776900310.1038/s41586-020-2915-3)
Zhang, R. et al. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature 557, 570–574 (2018). (PMID: 29769725597097610.1038/s41586-018-0121-3)
Lozzio, C. B. & Lozzio, B. B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45, 321–334 (1975). (PMID: 16365810.1182/blood.V45.3.321.321)
Ko, S. Y. et al. A virus-like particle vaccine prevents equine encephalitis virus infection in nonhuman primates. Sci. Transl. Med. 11, eaav3113 (2019). (PMID: 3109269210.1126/scitranslmed.aav3113)
Basore, K. et al. Cryo-EM structure of Chikungunya virus in complex with the Mxra8 receptor. Cell 177, 1725–1737.e1716 (2019). (PMID: 31080061722748610.1016/j.cell.2019.04.006)
Cao, D., Ma, B., Cao, Z., Zhang, X. & Xiang, Y. Structure of Semliki Forest virus in complex with its receptor VLDLR. Cell 186, 2208–2218.e2215 (2023). (PMID: 3709834510.1016/j.cell.2023.03.032)
Basore, K. et al. Structure of Venezuelan equine encephalitis virus in complex with the LDLRAD3 receptor. Nature 598, 672–676 (2021). (PMID: 34646020855093610.1038/s41586-021-03963-9)
Ma, B., Huang, C., Ma, J., Xiang, Y. & Zhang, X. Structure of Venezuelan equine encephalitis virus with its receptor LDLRAD3. Nature 598, 677–681 (2021). (PMID: 3464602110.1038/s41586-021-03909-1)
Brandes, C. et al. Alternative splicing in the ligand binding domain of mouse ApoE receptor-2 produces receptor variants binding reelin but not alpha 2-macroglobulin. J. Biol. Chem. 276, 22160–22169 (2001). (PMID: 1129484510.1074/jbc.M102662200)
Clatworthy, A. E. et al. Expression and alternate splicing of apolipoprotein E receptor 2 in brain. Neuroscience 90, 903–911 (1999). (PMID: 1021879010.1016/S0306-4522(98)00489-8)
Lane-Donovan, C. & Herz, J. The ApoE receptors Vldlr and Apoer2 in central nervous system function and disease. J. Lipid Res. 58, 1036–1043 (2017). (PMID: 28292942545452010.1194/jlr.R075507)
Fisher, C., Beglova, N. & Blacklow, S. C. Structure of an LDLR–RAP complex reveals a general mode for ligand recognition by lipoprotein receptors. Mol. Cell 22, 277–283 (2006). (PMID: 1663089510.1016/j.molcel.2006.02.021)
Ganaie, S. S. et al. Lrp1 is a host entry factor for Rift Valley fever virus. Cell 184, 5163–5178.e5124 (2021). (PMID: 34559985878621810.1016/j.cell.2021.09.001)
Reisen, W. K., Chiles, R. E., Martinez, V. M., Fang, Y. & Green, E. N. Experimental infection of California birds with western equine encephalomyelitis and St. Louis encephalitis viruses. J. Med. Entomol. 40, 968–982 (2003). (PMID: 1476567810.1603/0022-2585-40.6.968)
Burton, A. N., McLintock, J. & Rempel, J. G. Western equine encephalitis virus in Saskatchewan garter snakes and leopard frogs. Science 154, 1029–1031 (1966). (PMID: 591975310.1126/science.154.3752.1029)
Thomas, L. A. & Eklund, C. M. Overwintering of western equine encephalomyelitis virus in garter snakes experimentally infected by Culex tarsalis. Proc. Soc. Exp. Biol. Med. 109, 421–424 (1962). (PMID: 1392082110.3181/00379727-109-27225)
Thomas, L. A., Patzer, E. R., Cory, J. C. & Coe, J. E. Antibody development in garter snakes (Thamnophis spp.) experimentally infected with western equine encephalitis virus. Am. J. Trop. Med. Hyg. 29, 112–117 (1980). (PMID: 735261810.4269/ajtmh.1980.29.112)
Zimmerman, O. et al. Vertebrate-class-specific binding modes of the alphavirus receptor MXRA8. Cell 186, 4818–4833.e4825 (2023). (PMID: 3780483110.1016/j.cell.2023.09.007)
Jangra, R. K. et al. Protocadherin-1 is essential for cell entry by New World hantaviruses. Nature 563, 559–563 (2018). (PMID: 30464266655621610.1038/s41586-018-0702-1)
Burke, C. W. et al. Complete coding sequence of Western equine encephalitis virus strain Fleming, isolated from a human case. Microbiol. Resour. Announc. 9, e01223–19 (2020). (PMID: 31896634694028610.1128/MRA.01223-19)
Martikainen M. et al. VLDLR mediates alphavirus neuroinvasion through the blood-cerebrospinal fluid barrier. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-3404545/v1 (2023).
Sponseller, M. L., Binn, L. N., Wooding, W. L. & Yager, R. H. Field strains of western encephalitis virus in ponies: virologic, clinical, and pathologic observations. Am. J. Vet. Res. 27, 1591–1598 (1966). (PMID: 5971613)
Byrne, R. J. et al. Clinical and immunologic interrelationship among Venezuelan, Eastern, and Western equine encephalomyelitis viruses in burros. Am. J. Vet. Res. 25, 24–31 (1964). (PMID: 14103234)
Ma, H. et al. The low-density lipoprotein receptor promotes infection of multiple encephalitic alphaviruses. Nat. Commun. 15, 246 (2024). (PMID: 381720961076436310.1038/s41467-023-44624-x)
Zhai, X. et al. LDLR is used as a cell entry receptor by multiple alphaviruses. Nat. Commun. 15, 622 (2024). (PMID: 382455151079992410.1038/s41467-024-44872-5)
Finkelshtein, D., Werman, A., Novick, D., Barak, S. & Rubinstein, M. LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc. Natl Acad. Sci. USA 110, 7306–7311 (2013). (PMID: 23589850364552310.1073/pnas.1214441110)
Nikolic, J. et al. Structural basis for the recognition of LDL-receptor family members by VSV glycoprotein. Nat. Commun. 9, 1029 (2018). (PMID: 29531262584762110.1038/s41467-018-03432-4)
Medh, J. D. et al. The 39-kDa receptor-associated protein modulates lipoprotein catabolism by binding to LDL receptors. J. Biol. Chem. 270, 536–540 (1995). (PMID: 782227610.1074/jbc.270.2.536)
Willnow, T. E. et al. RAP, a specialized chaperone, prevents ligand-induced ER retention and degradation of LDL receptor-related endocytic receptors. EMBO J. 15, 2632–2639 (1996). (PMID: 865436045019810.1002/j.1460-2075.1996.tb00623.x)
Gardner, C. L. et al. In vitro and in vivo phenotypes of Venezuelan, Eastern and Western equine encephalitis viruses derived from cDNA clones of human isolates. Viruses 15, 5 (2023). (PMID: 10.3390/v15010005)
Nie, D. & Sahin, M. A genetic model to dissect the role of Tsc–mTORC1 in neuronal cultures. Methods Mol. Biol. 821, 393–405 (2012). (PMID: 2212508010.1007/978-1-61779-430-8_25)
Kuhn, R. J., Niesters, H. G., Hong, Z. & Strauss, J. H. Infectious RNA transcripts from Ross River virus cDNA clones and the construction and characterization of defined chimeras with Sindbis virus. Virology 182, 430–441 (1991). (PMID: 167381210.1016/0042-6822(91)90584-X)
Bausch-Fluck, D. et al. A mass spectrometric-derived cell surface protein atlas. PLoS ONE 10, e0121314 (2015). (PMID: 25894527440434710.1371/journal.pone.0121314)
Almen, M. S., Nordstrom, K. J., Fredriksson, R. & Schioth, H. B. Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol. 7, 50 (2009). (PMID: 19678920273916010.1186/1741-7007-7-50)
da Cunha, J. P. et al. Bioinformatics construction of the human cell surfaceome. Proc. Natl Acad. Sci. USA 106, 16752–16757 (2009). (PMID: 19805368275786410.1073/pnas.0907939106)
Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014). (PMID: 25075903448624510.1038/nmeth.3047)
Joung, J. et al. Genome-scale CRISPR–Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017). (PMID: 28333914552607110.1038/nprot.2017.016)
Akahata, W. et al. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat. Med. 16, 334–338 (2010). (PMID: 20111039283482610.1038/nm.2105)
Bajic, G. et al. Influenza antigen engineering focuses immune responses to a subdominant but broadly protective viral epitope. Cell Host Microbe 25, 827–835 e826 (2019). (PMID: 31104946674865510.1016/j.chom.2019.04.003)
Clark, S. A. et al. SARS-CoV-2 evolution in an immunocompromised host reveals shared neutralization escape mechanisms. Cell 184, 2605–2617.e2618 (2021). (PMID: 33831372796254810.1016/j.cell.2021.03.027)
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). (PMID: 2274377210.1038/nmeth.2019)
Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 38, 3022–3027 (2021). (PMID: 33892491823349610.1093/molbev/msab120)
Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014). (PMID: 24753421408610610.1093/nar/gku316)
Forrester, N. L., Kenney, J. L., Deardorff, E., Wang, E. & Weaver, S. C. Western equine encephalitis submergence: lack of evidence for a decline in virus virulence. Virology 380, 170–172 (2008). (PMID: 1880154910.1016/j.virol.2008.08.012)
معلومات مُعتمدة: R01 MH125162 United States MH NIMH NIH HHS; R01 AI168005 United States AI NIAID NIH HHS; T32 CA009216 United States CA NCI NIH HHS; T32 GM144273 United States GM NIGMS NIH HHS; R24 AI120942 United States AI NIAID NIH HHS; R01 AI182377 United States AI NIAID NIH HHS
المشرفين على المادة: 0 (LDL-Receptor Related Proteins)
0 (low density lipoprotein receptor-related protein 8)
0 (PCDH10 protein, human)
0 (Pcdh10 protein, mouse)
0 (Protocadherins)
0 (Receptors, LDL)
0 (Receptors, Virus)
0 (Viral Envelope Proteins)
0 (VLDL receptor)
تواريخ الأحداث: Date Created: 20240724 Date Completed: 20240814 Latest Revision: 20240822
رمز التحديث: 20240822
مُعرف محوري في PubMed: PMC11324528
DOI: 10.1038/s41586-024-07740-2
PMID: 39048821
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-024-07740-2