دورية أكاديمية

Waterborne atenolol disrupts neurobehavioral and neurochemical responses in adult zebrafish.

التفاصيل البيبلوغرافية
العنوان: Waterborne atenolol disrupts neurobehavioral and neurochemical responses in adult zebrafish.
المؤلفون: Adedara IA; Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil. isaac.adedara@ufsm.br.; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria. isaac.adedara@ufsm.br.; Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil. isaac.adedara@ufsm.br., Gonçalves FL; Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil., Mohammed KA; Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil., Borba JV; Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil., Canzian J; Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil., Resmim CM; Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil., Claro MT; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil., Macedo GT; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil., Mostardeiro VB; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil., Assmann CE; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil., Monteiro CS; Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil., Emanuelli T; Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil., Schetinger MRC; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil., Barbosa NV; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil., Rosemberg DB; Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 Aug; Vol. 31 (36), pp. 49200-49213. Date of Electronic Publication: 2024 Jul 25.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Zebrafish* , Atenolol*/pharmacology , Water Pollutants, Chemical*/toxicity , Oxidative Stress*/drug effects , Behavior, Animal*/drug effects, Animals ; Tryptophan Hydroxylase/metabolism ; Tryptophan Hydroxylase/genetics ; Brain-Derived Neurotrophic Factor/metabolism
مستخلص: Environmental contamination by pharmaceuticals from industrial waste and anthropogenic activities poses adverse health effects on non-target organisms. We evaluated the neurobehavioral and biochemical responses accompanying exposure to ecological relevant concentrations of atenolol (0, 0.1, 1.0, and 10 µg/L) for seven uninterrupted days in adult zebrafish (Danio rerio). Atenolol-exposed fish exhibited anxiety-like behavior, characterized by significant bottom-dwelling with marked reduction in vertical exploration. Atenolol-exposed fish exhibited marked increase in the duration and frequency of aggressive events without altering their preference for conspecifics. Biochemical data using brain samples indicated that atenolol disrupted antioxidant enzyme activities and induced oxidative stress. Exposure to atenolol markedly decreased ATP and AMP hydrolysis without affecting ADP hydrolysis and acetylcholinesterase (AChE) activity. Atenolol significantly upregulated tryptophan hydroxylase 1 (tph1) mRNA expression but downregulated brain-derived neurotrophic factor (bdnf) mRNA. Collectively, waterborne atenolol elicits aggressive and anxiety-like responses in adult zebrafish, accompanied by oxidative stress, reduced nucleotide hydrolysis, altered tph1 and bdnf mRNA expression, which may impact the survival and health of fish in aquatic environment.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Adedara IA, Awogbindin IO, Afolabi BA, Ajayi BO, Rocha JBT, Farombi EO (2020) Hazardous impact of diclofenac exposure on the behavior and antioxidant defense system in Nauphoeta cinerea. Environ Pollut 265:115053. https://doi.org/10.1016/j.envpol.2020.115053. (PMID: 10.1016/j.envpol.2020.115053)
Adedara IA, Souza TP, Canzian J, Olabiyi AA, Borba JV, Biasuz E, Sabadin GR, Gonçalves FL, Costa FV, Schetinger MRC, Farombi EO, Rosemberg DB (2022) Induction of aggression and anxiety-like responses by perfluorooctanoic acid is accompanied by modulation of cholinergic-and purinergic signaling-related parameters in adult zebrafish. Ecotoxicol Environ Saf 533(239):113635. https://doi.org/10.1016/j.ecoenv.2022.113635. (PMID: 10.1016/j.ecoenv.2022.113635)
Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. (PMID: 10.1016/S0076-6879(84)05016-3)
Agunbiade FO, Moodley B (2014) Pharmaceuticals as emerging organic contaminants in Umgeni River water system, KwaZulu-Natal, South Africa. Environ Monit Assess 186:7273–7291. (PMID: 10.1007/s10661-014-3926-z)
Aleström P, D’Angelo L, Midtlyng PJ, Schorderet DF, Schulte-Merker S, Sohm F, Warner S (2020) Zebrafish: housing and husbandry recommendations. Lab Anim 54:213–224. (PMID: 10.1177/0023677219869037)
Anand SK, Mondal AC (2020) Neuroanatomical distribution and functions of brain-derived neurotrophic factor in zebrafish (Danio rerio) brain. J Neurosci Res 98(5):754–763. (PMID: 10.1002/jnr.24536)
Araujo-Silva H, de Souza AM, Mamede JPM, de Medeiros SRB, Luchiari AC (2023) Individual differences in response to alcohol and nicotine in zebrafish: gene expression and behavior. Dev Growth Differ 65(8):434–445. (PMID: 10.1111/dgd.12876)
Avdesh A, Chen M, Martin-Iverson MT, Mondal A, Ong D, Rainey-Smith S, Taddei K, Lardelli M, Groth DM, Verdile G, Martins RN (2012) Regular care and maintenance of a zebrafish (Danio rerio) laboratory: an introduction. J vis Exp 69:e4196. https://doi.org/10.3791/4196. (PMID: 10.3791/4196)
Bambino K, Chu J (2017) Zebrafish in toxicology and environmental health. Curr Top Dev Biol 124:331–367. (PMID: 10.1016/bs.ctdb.2016.10.007)
Bangia S, Bangia R, Daverey A (2023) Pharmaceutically active compounds in aqueous environment: recent developments in their fate, occurrence and elimination for efficient water purification. Environ Monit Assess 195(11):1344. https://doi.org/10.1007/s10661-023-11858-7. (PMID: 10.1007/s10661-023-11858-7)
Behera SK, Kim HW, Oh JE, Park HS (2011) Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Sci Total Environ 409:4351–4360. (PMID: 10.1016/j.scitotenv.2011.07.015)
Bonan CD (2012) Ectonucleotidases and nucleotide/nucleoside transporters as pharmacological targets for neurological disorders. CNS Neurol Disord Drug Targets 11(6):739–750. (PMID: 10.2174/187152712803581092)
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. (PMID: 10.1016/0003-2697(76)90527-3)
Brustein E, Chong M, Holmqvist B, Drapeau P (2003) Serotonin patterns locomotor network activity in the developing zebrafish by modulating quiescent periods. J Neurobiol 57(3):303–322. (PMID: 10.1002/neu.10292)
Bu Q, Wang B, Huang J, Deng S, Yu G (2013) Pharmaceuticals and personal care products in the aquatic environment in China: a review. J Hazard Mater 262:189–211. (PMID: 10.1016/j.jhazmat.2013.08.040)
Canzian J, Fontana BD, Quadros VA, Rosemberg DB (2017) Conspecific alarm substance differently alters group behavior of zebrafish populations: putative involvement of cholinergic and purinergic signaling in anxiety- and fear-like responses. Behav Brain Res 320:255–263. (PMID: 10.1016/j.bbr.2016.12.018)
Castillo NA, James WR, Santos RO, Rezek R, Cerveny D, Boucek RE, Adams AJ, Goldberg T, Campbell L, Perez AU, Schmitter-Soto JJ, Lewis JP, Fick J, Brodin T, Rehage JS (2024) Understanding pharmaceutical exposure and the potential for effects in marine biota: a survey of bonefish (Albula vulpes) across the Caribbean Basin. Chemosphere 349:140949. https://doi.org/10.1016/j.chemosphere.2023.140949. (PMID: 10.1016/j.chemosphere.2023.140949)
Castro MFV, Stefanello N, Assmann CE, Baldissarelli J, Bagatini MD, da Silva AD, da Costa P, Borba L, da Cruz IBM, Morsch VM, Schetinger MRC (2021) Modulatory effects of caffeic acid on purinergic and cholinergic systems and oxi-inflammatory parameters of streptozotocin-induced diabetic rats. Life Sci 277:119421. https://doi.org/10.1016/j.lfs.2021.119421. (PMID: 10.1016/j.lfs.2021.119421)
Colucci-D’Amato L, Speranza L, Volpicelli F (2020) Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int J Mol Sci 21(20):7777. https://doi.org/10.3390/ijms21207777. (PMID: 10.3390/ijms21207777)
Dalahmeh S, Björnberg E, Elenström AK, Niwagaba CB, Komakech AJ (2020) Pharmaceutical pollution of water resources in Nakivubo wetlands and Lake Victoria, Kampala, Uganda. Sci Total Environ 710:136347. https://doi.org/10.1016/j.scitotenv.2019.136347. (PMID: 10.1016/j.scitotenv.2019.136347)
de Sousa DNR, Mozeto AA, Carneiro RL, Fadini PS (2018) Spatio-temporal evaluation of emerging contaminants and their partitioning along a Brazilian watershed. Environ Sci Pollut Res Int. 25(5):4607–4620. (PMID: 10.1007/s11356-017-0767-7)
Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431. (PMID: 10.1016/0076-6879(90)86135-I)
Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, Elkhayat SI, Bartels BK, Tien AK, Tien DH, Mohnot S, Beeson E, Glasgow E, Amri H, Zukowska Z, Kalueff AV (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205:38–44. (PMID: 10.1016/j.bbr.2009.06.022)
Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. (PMID: 10.1016/0006-2952(61)90145-9)
Fekadu S, Alemayehu E, Dewil R, Van der Bruggen B (2019) Pharmaceuticals in freshwater aquatic environments: a comparison of the African and European challenge. Sci Total Environ 654:324–337. (PMID: 10.1016/j.scitotenv.2018.11.072)
Fitzgerald JA, Könemann S, Krümpelmann L, Županič A, Vom Berg C (2021) Approaches to test the neurotoxicity of environmental contaminants in the zebrafish model: from behavior to molecular mechanisms. Environ Toxicol Chem 40(4):989–1006. (PMID: 10.1002/etc.4951)
Flaive A, Fougère M, van der Zouwen CI, Ryczko D (2020) Serotonergic modulation of locomotor activity from basal vertebrates to mammals. Front Neural Circuits. 14:590299. https://doi.org/10.3389/fncir.2020.590299. (PMID: 10.3389/fncir.2020.590299)
Fontana BD, Cleal M, Clay JM, Parker MO (2019) Zebrafish (Danio rerio) behavioral laterality predicts increased short-term avoidance memory but not stress reactivity responses. Anim Cogn 22:1051–1061. (PMID: 10.1007/s10071-019-01296-9)
Fontana BD, Müller TE, Cleal M, de Abreu MS, Norton WHJ, Demin KA, Amstislavskaya TG, Petersen EV, Kalueff AV, Parker MO, Rosemberg DB (2022) Using zebrafish (Danio rerio) models to understand the critical role of social interactions in mental health and wellbeing. Prog Neurobiol 208:101993. https://doi.org/10.1016/j.pneurobio.2021.101993. (PMID: 10.1016/j.pneurobio.2021.101993)
Freudenberg F, Carreño Gutierrez H, Post AM, Reif A, Norton WH (2016) Aggression in non- human vertebrates: genetic mechanisms and molecular pathways. Am J Med Genet B Neuropsychiatr Genet 171(5):603–640. (PMID: 10.1002/ajmg.b.32358)
Gao SJ, Zhao GC, Luo GM, Yang TS, Shen JC (1998) Antioxidant effects of superoxide dismutase and horseradish peroxidase on lipid peroxidation. Ann N Y Acad Sci 864:284–287. (PMID: 10.1111/j.1749-6632.1998.tb10323.x)
Gerlai R, Lahav M, Guo S, Rosenthal A (2000) Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67:773–782. (PMID: 10.1016/S0091-3057(00)00422-6)
Honti M, Zsugyel M, Seller C, Fenner K (2023) Benchmarking the persistence of active pharmaceutical ingredients in river systems. Environ Sci Technol 57(39):14684–14693. (PMID: 10.1021/acs.est.3c01627)
Imbriani P, Martella G, Bonsi P, Pisani A (2022) Oxidative stress and synaptic dysfunction in rodent models of Parkinson’s disease. Neurobiol Dis 173:105851. https://doi.org/10.1016/j.nbd.2022.105851. (PMID: 10.1016/j.nbd.2022.105851)
Ivantsova E, Konig I, Souders CL 2nd, McNabney D, Simmons DDB, Martyniuk CJ (2023) Lipidomic, metabolomic, and behavior responses of zebrafish (Danio rerio) exposed to environmental levels of the beta blocker atenolol. Sci Total Environ 866:161272. https://doi.org/10.1016/j.scitotenv.2022.161272. (PMID: 10.1016/j.scitotenv.2022.161272)
Ji N, Lei M, Chen Y, Tian S, Li C, Zhang B (2023) How oxidative stress induces depression? ASN Neuro 15:17590914231181036. https://doi.org/10.1177/17590914231181037. (PMID: 10.1177/17590914231181037)
Kallenborn R, Brorström-Lundén E, Reiersen LO, Wilson S (2018) Pharmaceuticals and personal care products (PPCPs) in Arctic environments: indicator contaminants for assessing local and remote anthropogenic sources in a pristine ecosystem in change. Environ Sci Pollut Res Int 25(33):33001–33013. (PMID: 10.1007/s11356-017-9726-6)
Kalueff AV, Gebhardt M, Stewart AM, Cachat JM, Brimmer M, Chawla JS, Craddock C, Kyzar EJ, Roth A, Landsman S, Gaikwad S, Robinson K, Baatrup E, Tierney K, Shamchuk A, Norton W, Miller N et al (2013) Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10(1):70–86. https://doi.org/10.1089/zeb.2012.0861. (PMID: 10.1089/zeb.2012.0861)
Kareklas K, Teles MC, Nunes AR, Oliveira RF (2023) Social zebrafish: Danio rerio as an emerging model in social neuroendocrinology. J Neuroendocrinol 35(9):e13280. https://doi.org/10.1111/jne.13280. (PMID: 10.1111/jne.13280)
Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2009) The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res 43:363–380. (PMID: 10.1016/j.watres.2008.10.047)
Khan S, Naushad M, Govarthanan M, Iqbal J, Alfadul SM (2022) Emerging contaminants of high concern for the environment: current trends and future research. Environ Res 207:112609. https://doi.org/10.1016/j.envres.2021.112609. (PMID: 10.1016/j.envres.2021.112609)
Könemann S, von Wyl M, Vom Berg C (2022) Zebrafish larvae rapidly recover from locomotor effects and neuromuscular alterations induced by cholinergic insecticides. Environ Sci Technol 56(12):8449–8462. (PMID: 10.1021/acs.est.2c00161)
Le Ray D, Bertrand SS, Dubuc R (2022) Cholinergic modulation of locomotor circuits in vertebrates. Int J Mol Sci 23(18):10738. https://doi.org/10.3390/ijms231810738. (PMID: 10.3390/ijms231810738)
Levin ED, Bencan Z, Cerutti DT (2007) Anxiolytic effects of nicotine in zebrafish. Physiol Behav 90(1):54–58. (PMID: 10.1016/j.physbeh.2006.08.026)
Ligina V, Martin R, Aiswarya MV, Mashirin KR, Chitra KC (2022) Acute and sublethal effects of acrylamide on the freshwater fish Anabas testudineus (Bloch, 1792). Environ Sci Pollut Res Int 29(60):90835–90851. (PMID: 10.1007/s11356-022-22155-0)
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔCT method. Methods 25(4):402–408. (PMID: 10.1006/meth.2001.1262)
López-Serna R, Petrović M, Barceló D (2011) Development of a fast instrumental method for the analysis of pharmaceuticals in environmental and wastewaters based on ultrahigh performance liquid chromatography (UHPLC)-tandem mass spectrometry (MS/MS). Chemosphere 85(8):1390–1399. (PMID: 10.1016/j.chemosphere.2011.07.071)
Mastrángelo MM, Valdés ME, Eissa B, Ossana NA, Barceló D, Sabater S, Rodríguez-Mozaz S, Giorgi AND (2022) Occurrence and accumulation of pharmaceutical products in water and biota of urban lowland rivers. Sci Total Environ 828:154303. https://doi.org/10.1016/j.scitotenv.2022.154303. (PMID: 10.1016/j.scitotenv.2022.154303)
Müller TE, Nunes SZ, Silveira A, Loro VL, Rosemberg DB (2017) Repeated ethanol exposure alters social behavior and oxidative stress parameters of zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 79(Pt B):105–111. (PMID: 10.1016/j.pnpbp.2017.05.026)
Nantaba F, Wasswa J, Kylin H, Bouwman H, Palm WU, Kümmerer K (2024) Spatial trends and ecotoxic risk assessment of selected pharmaceuticals in sediments from Lake Victoria, Uganda, East Africa. Sci Total Environ 906:167348. https://doi.org/10.1016/j.scitotenv.2023.167348. (PMID: 10.1016/j.scitotenv.2023.167348)
Ogunlaja A, Ogunlaja OO, Olukanni OD, Taylor GO, Olorunnisola CG, Dougnon VT, Mousse W, Fatta-Kassinos D, Msagati TAM, Unuabonah EI (2022) Antibiotic resistomes and their chemical residues in aquatic environments in Africa. Environ Pollut 312:119783. https://doi.org/10.1016/j.envpol.2022.119783. (PMID: 10.1016/j.envpol.2022.119783)
Öğütlü H, Kaşak M, Tutku Tabur S (2022) Mitochondrial dysfunction in attention deficit hyperactivity disorder. Eurasian J Med 54(Suppl1):187–195.
Owoeye O, Adedara IA, Farombi EO (2018) Pretreatment with taurine prevented brain injury and exploratory behaviour associated with administration of anticancer drug cisplatin in rats. Biomed Pharmacother 102:375–384. (PMID: 10.1016/j.biopha.2018.03.051)
Picolo VL, Quadros VA, Canzian J, Grisolia CK, Goulart JT, Pantoja C, de Bem AF, Rosemberg DB (2021) Short-term high-fat diet induces cognitive decline, aggression, and anxiety-like behavior in adult zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 110:110288. (PMID: 10.1016/j.pnpbp.2021.110288)
Ping S, Lin W, Ming R, He Y, Yin Y, Ren Y (2022) Toxic effects of four cardiovascular drugs on the development and epigenetics of zebrafish (Danio rerio). Sci Total Environ 846:157360. https://doi.org/10.1016/j.scitotenv.2022.157360. (PMID: 10.1016/j.scitotenv.2022.157360)
Rahman MS, Thomas P (2009) Molecular cloning, characterization and expression of two tryptophan hydroxylase (TPH-1 and TPH-2) genes in the hypothalamus of Atlantic croaker: down-regulation after chronic exposure to hypoxia. Neuroscience 158(2):751–765. (PMID: 10.1016/j.neuroscience.2008.10.029)
Ranjan N, Singh PK, Maurya NS (2022) Pharmaceuticals in water as emerging pollutants for river health: a critical review under Indian conditions. Ecotoxicol Environ Saf 247:114220. https://doi.org/10.1016/j.ecoenv.2022.114220. (PMID: 10.1016/j.ecoenv.2022.114220)
Rezaei R, Aghapour AA, Khorsandi H (2022) Investigating the biological degradation of the drug β-blocker atenolol from wastewater using the SBR. Biodegradation 33(3):267–281. (PMID: 10.1007/s10532-022-09979-w)
Rodrigues RJ, Tomé AR, Cunha RA (2015) ATP as a multi-target danger signal in the brain. Front Neurosci 9:148. https://doi.org/10.3389/fnins.2015.00148. (PMID: 10.3389/fnins.2015.00148)
Rosemberg DB, da Rocha RF, Rico EP, Zanotto-Filho A, Dias RD, Bogo MR, Bonan CD, Moreira JC, Klamt F, Souza DO (2010a) Taurine prevents enhancement of acetylcholinesterase activity induced by acute ethanol exposure and decreases the level of markers of oxidative stress in zebrafish brain. Neuroscience 171:683–692. (PMID: 10.1016/j.neuroscience.2010.09.030)
Rosemberg DB, Rico EP, Langoni AS, Spinelli JT, Pereira TC, Dias RD, Souza DO, Bonan CD, Bogo MR (2010b) NTPDase family in zebrafish: nucleotide hydrolysis, molecular identification and gene expression profiles in brain, liver and heart. Comp Biochem Physiol B Biochem Mol Biol 155(3):230–240. (PMID: 10.1016/j.cbpb.2009.11.005)
Rosemberg DB, Adedara IA, Canzian J, Farombi EO (2022) The growing utility of zebrafish models in ecotoxicology: a neurobehavioral perspective. International Webinar One Health Over Borders. ISBN: 978–65–88403–56–3; pp 63–82.
Santos LH, Gros M, Rodriguez-Mozaz S, Delerue-Matos C, Pena A, Barceló D, Montenegro MC (2013) Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Sci Total Environ 461–462:302–316. (PMID: 10.1016/j.scitotenv.2013.04.077)
Saverino C, Gerlai R (2008) The social zebrafish: behavioral responses to conspecific, heterospecific, and computer animated fish. Behav Brain Res 191:77–87. (PMID: 10.1016/j.bbr.2008.03.013)
Schmidel AJ, Assmann KL, Werlang CC, Bertoncello KT, Francescon F, Rambo CL, Beltrame GM, Calegari D, Batista CB, Blaser RE, Roman Júnior WA, Conterato GM, Piato AL, Zanatta L, Magro JD, Rosemberg DB (2014) Subchronic atrazine exposure changes defensive behaviour profile and disrupts brain acetylcholinesterase activity of zebrafish. Neurotoxicol Teratol 44:62–69. (PMID: 10.1016/j.ntt.2014.05.006)
Sousa JCG, Ribeiro AR, Barbosa MO, Pereira MFR, Silva AMT (2018) A review on environmental monitoring of water organic pollutants identified by EU guidelines. J Hazard Mater 344:146–162. (PMID: 10.1016/j.jhazmat.2017.09.058)
Stefanello N, Spanevello RM, Passamonti S, Porciúncula L, Bonan CD, Olabiyi AA, Teixeira da Rocha JB, Assmann CE, Morsch VM, Schetinger MRC (2019) Coffee, caffeine, chlorogenic acid, and the purinergic system. Food Chem Toxicol 123:298–313. (PMID: 10.1016/j.fct.2018.10.005)
Steinbach C, Burkina V, Fedorova G, Grabicova K, Stara A, Velisek J, Zlabek V, Schmidt- Posthaus H, Grabic R, Kocour KH (2014) The sub-lethal effects and tissue concentration of the human pharmaceutical atenolol in rainbow trout (Oncorhynchus mykiss). Sci Total Environ 497–498:209–218. (PMID: 10.1016/j.scitotenv.2014.07.111)
Tal T, Yaghoobi B, Lein PJ (2020) Translational toxicology in zebrafish. Curr Opin Toxicol 23–24:56–66. (PMID: 10.1016/j.cotox.2020.05.004)
Tóth A, Antal Z, Bereczki D, Sperlágh B (2019) Purinergic signalling in Parkinson’s disease: a multi-target system to combat neurodegeneration. Neurochem Res 44(10):2413–2422. (PMID: 10.1007/s11064-019-02798-1)
Ulvi A, Aydın S, Aydın ME (2022) Fate of selected pharmaceuticals in hospital and municipal wastewater effluent: occurrence, removal, and environmental risk assessment. Environ Sci Pollut Res Int 29(50):75609–75625. (PMID: 10.1007/s11356-022-21131-y)
Vaudreuil MA, Munoz G, Vo Duy S, Sauvé S (2024) Tracking down pharmaceutical pollution in surface waters of the St. Lawrence River and its major tributaries. Sci Total Environ. 912:168680. https://doi.org/10.1016/j.scitotenv.2023.168680. (PMID: 10.1016/j.scitotenv.2023.168680)
Verkhratsky A, Burnstock G (2014) Biology of purinergic signalling: its ancient evolutionary roots, its omnipresence and its multiple functional significance. BioEssays 36(7):697–705. (PMID: 10.1002/bies.201400024)
Wang Y, Chen Y, Zhang A, Chen K, Ouyang P (2023) Advances in the microbial synthesis of the neurotransmitter serotonin. Appl Microbiol Biotechnol 107(15):4717–4725. (PMID: 10.1007/s00253-023-12584-3)
Zabegalov KN, Kolesnikova TO, Khatsko SL, Volgin AD, Yakovlev OA, Amstislavskaya TG, Friend AJ, Bao W, Alekseeva PA, Lakstygal AM, Meshalkina DA, Demin KA, de Abreu MS, Rosemberg DB, Kalueff AV (2019) Understanding zebrafish aggressive behavior. Behav Processes 158:200–210. https://doi.org/10.1016/j.beproc.2018.11.010. (PMID: 10.1016/j.beproc.2018.11.010)
فهرسة مساهمة: Keywords: Atenolol; Behavioral parameters; Brain-derived neurotrophic factor; Purinergic system; Zebrafish
المشرفين على المادة: 50VV3VW0TI (Atenolol)
0 (Water Pollutants, Chemical)
EC 1.14.16.4 (Tryptophan Hydroxylase)
0 (Brain-Derived Neurotrophic Factor)
تواريخ الأحداث: Date Created: 20240724 Date Completed: 20240808 Latest Revision: 20240808
رمز التحديث: 20240808
DOI: 10.1007/s11356-024-34428-x
PMID: 39048857
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-024-34428-x