دورية أكاديمية

Evaluation of cross-neutralizing immunity following COVID-19 primary series vaccination during the Omicron surge in Tanzania.

التفاصيل البيبلوغرافية
العنوان: Evaluation of cross-neutralizing immunity following COVID-19 primary series vaccination during the Omicron surge in Tanzania.
المؤلفون: Nkinda L; Campus College of Medicine, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania., Barabona G; Joint Research Centre for Retrovirus Infection, Kumamoto University, Kumamoto, Japan., Ngare I; Joint Research Centre for Retrovirus Infection, Kumamoto University, Kumamoto, Japan., Nkuwi E; Joint Research Centre for Retrovirus Infection, Kumamoto University, Kumamoto, Japan.; Department of Microbiology and Parasitology, University of Dodoma, Dodoma, Tanzania., Kamori D; Campus College of Medicine, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania.; Joint Research Centre for Retrovirus Infection, Kumamoto University, Kumamoto, Japan., Msafiri F; Campus College of Medicine, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania., Kunambi PP; Campus College of Medicine, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania., Osati E; Campus College of Medicine, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania.; Muhimbili National Hospital, Dar-es-Salaam, Tanzania., Kidenya BR; Department of Biochemistry and Molecular Biology, Catholic University of Health and Allied Sciences- Bugando, Mwanza, Tanzania., Chuwa H; Aga Khan Hospital, Dar-es-Salaam, Tanzania., Kinasa G; Aga Khan Hospital, Dar-es-Salaam, Tanzania., Hassan FE; National Institution for Medical Research, Muhimbili Centre, Dar es Salaam, Tanzania., Judicate GP; Campus College of Medicine, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania.; National Institution for Medical Research, Muhimbili Centre, Dar es Salaam, Tanzania., Gasper J; Temeke Regional Referral Hospital, Dar-es-Salaam, Tanzania., Kisuse J; National Institution for Medical Research, Muhimbili Centre, Dar es Salaam, Tanzania., Mfinanga S; National Institution for Medical Research, Muhimbili Centre, Dar es Salaam, Tanzania., Senkoro M; National Institution for Medical Research, Muhimbili Centre, Dar es Salaam, Tanzania., Ueno T; Campus College of Medicine, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania.; Joint Research Centre for Retrovirus Infection, Kumamoto University, Kumamoto, Japan., Lyamuya E; Campus College of Medicine, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania., Balandya E; Campus College of Medicine, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania.
المصدر: Journal of medical virology [J Med Virol] 2024 Aug; Vol. 96 (8), pp. e29822.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 7705876 Publication Model: Print Cited Medium: Internet ISSN: 1096-9071 (Electronic) Linking ISSN: 01466615 NLM ISO Abbreviation: J Med Virol Subsets: MEDLINE
أسماء مطبوعة: Publication: New York Ny : Wiley-Liss
Original Publication: New York, Liss.
مواضيع طبية MeSH: COVID-19*/prevention & control , COVID-19*/immunology , COVID-19*/epidemiology , Antibodies, Neutralizing*/blood , Antibodies, Neutralizing*/immunology , Antibodies, Viral*/blood , COVID-19 Vaccines*/immunology , COVID-19 Vaccines*/administration & dosage , SARS-CoV-2*/immunology , Vaccination*, Humans ; Tanzania/epidemiology ; Male ; Female ; Adult ; Middle Aged ; Young Adult ; Neutralization Tests ; Adolescent
مستخلص: COVID-19 vaccine became available in Tanzania during the first wave of the Omicron variant. During that time community seroprevalence of SARS-CoV-2 was already at 50%-80%. To date, it remains largely unknown whether ongoing vaccination with the primary series vaccines has any meaningful immune-boosting effects against newer Omicron subvariants. Therefore, we tested cross-neutralizing capacity of antibodies elicited by infection, vaccination, or both against SARS-CoV-2 Omicron subvariants BA.1, and the newer subvariants BQ.1.1 and XBB.1.5. that were unexperienced by this population. Participants who were either SARS-CoV-2 infected-only (n = 28), infected vaccinated (n = 22), or vaccinated-only (n = 73) were recruited from Dar-es-Salaam, Tanzania, between April and December 2022. Plasma 50% neutralization titers (NT 50 ) against SARS-CoV-2 wild-type strain and Omicron subvariants were quantified by a lentiviral-based pseudo-virus assay. Percentage of participants with neutralizing activity against WT and BA.1 was high (>85%) but was reduced against BQ.1.1 (64%-77%) and XBB.1.5 (35%-68%) subvariants. The low median cross-neutralization titer was slightly higher in the infected vaccinated group compared to vaccine-only group against BQ.1.1 (NT 50 148 vs. 85, p = 0.032) and XBB.1.5 (NT 50 85 vs. 37 p = 0.022) subvariants. In contrast, vaccine-boost among the infected vaccinated did not result to increased cross-neutralization compared to infected-only participants (BQ.1.1 [NT 50 of 148 vs. 100, p = 0.501] and XBB.1.5 [NT 50 86 vs. 45, p = 0.474]). We report severely attenuated neutralization titers against BQ.1.1 and XBB.1.5 subvariants among vaccinated participants, which marginally improved in the infected vaccinated participants. Our findings call for further studies to evaluate effectiveness of the primary series vaccines in preventing severe infection and mortality against the newer variants.
(© 2024 Wiley Periodicals LLC.)
References: Burki T. WHO ends the COVID‐19 public health emergency. Lancet Respir Med. 2023;11:588. doi:10.1016/S2213-2600(23)00217-5.
Alam MS. Insight into SARS‐CoV‐2 Omicron variant immune escape possibility and variant independent potential therapeutic opportunities. Heliyon. 2023;9:e13285. doi:10.1016/j.heliyon.2023.e13285.
Evans RA, Dube S, Lu Y, et al. Impact of COVID‐19 on immunocompromised populations during the Omicron era: insights from the observational population‐based INFORM study. Lancet Reg Health Eur. 2023;35:100747. doi:10.1016/j.lanepe.2023.100747.
World Health Organisation. WHO releases global COVID‐19 vaccination strategy update to reach unprotected. 2022. https://www.who.int/news/item/22-07-2022-who-releases-global-covid-19-vaccination-strategy-update-to-reach-unprotected.
Keeton R, Richardson SI, Moyo‐Gwete T, et al. Prior infection with SARS‐CoV‐2 boosts and broadens Ad26.COV2.S immunogenicity in a variant‐dependent manner. Cell Host Microbe. 2021;29:1611‐1619. doi:10.1016/j.chom.2021.10.003.
Uddin MN, Roni MA. Challenges of storage and stability of mrna‐based Covid‐19 vaccines. Vaccines. 2021;9:1033. doi:10.3390/vaccines9091033.
Bruxvoort KJ, Sy LS, Qian L, et al. Real‐world effectiveness of the mRNA‐1273 vaccine against COVID‐19: interim results from a prospective observational cohort study. Lancet Reg Health Am. 2022;6:100134. doi:10.1016/j.lana.2021.100134.
Wu N, Joyal‐Desmarais K, Ribeiro PAB, et al. Long‐term effectiveness of COVID‐19 vaccines against infections, hospitalisations, and mortality in adults: findings from a rapid living systematic evidence synthesis and meta‐analysis up to December, 2022. Lancet Respir Med. 2023;11:439‐452. doi:10.1016/S2213-2600(23)00015-2.
Ministry of Health. Jamuhuri ya Muungano wa Tanzania Wizara ya Afya Taarifa ya Hali ya Uviko‐19 Kuanzia Tarehe 02 Hadi 08, Aprili 2022. 2022.
Mnyambwa NP, Lubinza C, Ngadaya E, et al. Clinical characteristics and outcomes of confirmed COVID‐19 patients in the early months of the pandemic in Tanzania: a multicenter cohort study. IJID Reg. 2022;2:118‐125. doi:10.1016/j.ijregi.2021.12.010.
Kangwerema A, Thomas H, Knovicks S, et al. The challenge of dearth of information in Tanzania's COVID‐19 response. J Glob Health Sci. 2021;3(2):e20. doi:10.35500/jghs.2021.3.e20.
Mfinanga SG, Mnyambwa NP, Minja DT, et al. Tanzania's position on the COVID‐19 pandemic. Lancet. 2021;397:1542‐1543. doi:10.1016/S0140-6736(21)00678-4.
Macdonald R, Molony T, Lihiru V. The reception of Covid‐19 denialist propaganda in Tanzania. J South Afr Stud. 2023;49:697‐716. doi:10.1080/03057070.2023.2298152.
Lyimo E, Fougeroux C, Malabeja A, et al. Seroprevalence of SARS‐CoV‐2 antibodies among children and adolescents recruited in a malariometric survey in north‐eastern Tanzania July 2021. BMC Infect Dis. 2022;22:846. doi:10.1186/s12879-022-07820-6.
Nyawale HA, Moremi N, Mohamed M, et al. High seroprevalence of SARS‐CoV‐2 in Mwanza, Northwestern Tanzania: a population‐based survey. Int J Environ Res Public Health. 2022;19:11664.
Salum SS, Sheikh MA, Hebestreit A, Kelm S. Anti SARS‐Cov‐2 seroprevalence in Zanzibar in 2021 before the omicron wave. IJID Reg. 2022;4:120‐122.
Githinji G, Lambisia AW, Omah I, et al. The genomic epidemiology of SARS‐CoV‐2 variants of concern in Kenya. 2022. doi:10.1101/2022.10.26.22281446.
Zayed NE, Abbas A, Lutfy SM. Criteria and potential predictors of severity in patients with COVID‐19. Egypt J Bronchol. 2022;16:11. doi:10.1186/s43168-022-00116-y.
Tan TS, Toyoda M, Ode H, et al. Dissecting naturally arising amino acid substitutions at position L452 of SARS‐CoV‐2 spike. J Virol. 2022;96:e01162‐22. doi:10.1128/jvi.01162-22.
Kurhade C, Zou J, Xia H, et al. Low neutralization of SARS‐CoV‐2 Omicron BA. 2.75. 2, BQ. 1.1 and XBB. 1 by parental mRNA vaccine or a BA. 5 bivalent booster. Nat Med. 2023;29:344‐347.
Mfinanga SG, Gatei W, Tinuga F, et al. Tanzania's COVID‐19 vaccination strategy: lessons, learning, and execution. Lancet. 2023;401:1649. doi:10.1016/S0140-6736(23)00723-7.
Borrega R, Nelson DKS, Koval AP, et al. Cross‐reactive antibodies to SARS‐Cov‐2 and MERS‐Cov in pre‐COVID‐19 blood samples from Sierra Leoneans. Viruses. 2021;13:2325. doi:10.3390/v13112325.
Barabona G, Ngare I, Kamori D, et al. Neutralizing immunity against coronaviruses in Tanzanian health care workers. Sci Rep. 2024;14:5508. doi:10.1038/s41598-024-55989-4.
Lasrado N, Collier AY, Miller J, et al. Waning immunity against XBB.1.5 following bivalent mRNA boosters. bioRxiv. Preprint posted online 2023. doi:10.1101/2023.01.22.525079.
Wang Q, Iketani S, Li Z, et al. Alarming antibody evasion properties of rising SARS‐CoV‐2 BQ and XBB subvariants. Cell. 2023;186:279‐286.e8. doi:10.1016/j.cell.2022.12.018.
Toyoda M, Tan TS, Motozono C, et al. Evaluation of neutralizing activity against Omicron subvariants in BA.5 breakthrough infection and three‐dose vaccination using a novel chemiluminescence‐based, virus‐mediated cytopathic assay. Microbiol Spectr. 2023;11:e00660‐23. doi:10.1128/spectrum.00660-23.
Yang J, Hong W, Lei H, et al. Low levels of neutralizing antibodies against XBB Omicron subvariants after BA.5 infection. Signal Transduct Target Ther. 2023;8:252. doi:10.1038/s41392-023-01495-4.
Collier AY, Miller J, Hachmann NP, et al. Immunogenicity of BA.5 bivalent mRNA vaccine boosters. N Engl J Med. 2023;388:565‐567. doi:10.1056/NEJMc2213948.
Wang Q, Bowen A, Tam AR, et al. SARS‐CoV‐2 neutralising antibodies after bivalent versus monovalent booster. Lancet Infect Dis. 2023;23:527‐528. doi:10.1016/S1473-3099(23)00181-0.
World Health Organisation. 2023. https://www.who.int/news/item/13-12-2023-statement-on-the-antigen-composition-of-the-covid-19-vaccine.
Patel N, Trost JF, Guebre‐Xabier M, et al. XBB.1.5 spike protein COVID‐19 vaccine induces broadly neutralizing and cellular immune responses against EG.5.1 and emerging XBB variants. bioRxiv. Preprint posted online 2023. doi:10.1101/2023.08.30.554497.
Soffer S, Glicksberg BS, Zimlichman E, et al. The association between obesity and peak antibody titer response in COVID‐19 infection. Obesity. 2021;29:1547‐1553. doi:10.1002/oby.23208.
Nasr M‐JC, Geerling E, Pinto AK. Impact of obesity on vaccination to SARS‐CoV‐2. Front Endocrinol. 2022;13:898810. doi:10.3389/fendo.2022.898810.
Frasca D, Reidy L, Cray C, et al. Influence of obesity on serum levels of SARS‐CoV‐2‐specific antibodies in COVID‐19 patients. PLoS One. 2021;16:e0245424.
Green WD, Beck MA. Obesity impairs the adaptive immune response to influenza virus. Ann Am Thorac Soc. 2017;14:S406‐S409. doi:10.1513/AnnalsATS.201706-447AW.
Montes‐Herrera D, Muñoz‐Medina JE, Fernandes‐Matano L, et al. Association of obesity with SARS‐CoV‐2 and its relationship with the humoral response prior to vaccination in the state of Mexico: a cross‐sectional study. Diagnostics. 2023;13:2630. doi:10.3390/diagnostics13162630.
Simayi A, Li C, Chen C, et al. Kinetics of SARS‐CoV‐2 neutralizing antibodies in Omicron breakthrough cases with inactivated vaccination: role in inferring the history and duration of infection. Front Immunol. 2023;14:1083523. doi:10.3389/fimmu.2023.1083523.
معلومات مُعتمدة: PSIA2020AGDG-3318 European and Development Clinical Trial Partnership; Amne Salim COVID 19 fund; 22H03119 JSPS KAKENHI Grant-in-Aid for Scientific Research; 22KK0148 JSPS KAKENHI Grant-in-Aid for Scientific Research; JPJSBP120219933 JSPS Bilateral Open Partnership Joint Research Project; JPJSBP120239932 JSPS Bilateral Open Partnership Joint Research Project; JPJSCCB20220010 JSPS Core-to-Core Program
فهرسة مساهمة: Keywords: Africa; BQ.1.1; SARS‐CoV‐2; Tanzania; XBB.1.5; neutralizing antibodies
المشرفين على المادة: 0 (Antibodies, Neutralizing)
0 (Antibodies, Viral)
0 (COVID-19 Vaccines)
SCR Organism: SARS-CoV-2 variants
تواريخ الأحداث: Date Created: 20240726 Date Completed: 20240726 Latest Revision: 20240726
رمز التحديث: 20240726
DOI: 10.1002/jmv.29822
PMID: 39056238
قاعدة البيانات: MEDLINE
الوصف
تدمد:1096-9071
DOI:10.1002/jmv.29822