دورية أكاديمية

Batch-to-Batch Variation in Laser-Inscribed Graphene (LIG) Electrodes for Electrochemical Sensing.

التفاصيل البيبلوغرافية
العنوان: Batch-to-Batch Variation in Laser-Inscribed Graphene (LIG) Electrodes for Electrochemical Sensing.
المؤلفون: Tang Y; Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29631, USA., Moreira GA; Department of Agricultural Sciences, Clemson University, Clemson, SC 29631, USA., Vanegas D; Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA., Datta SPA; Department of Mechanical Engineering, MIT Auto-ID Labs, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.; Biomedical Engineering Program, Medical Device (MDPnP) Interoperability and Cybersecurity Labs, Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA 02139, USA., McLamore ES; Department of Agricultural Sciences, Clemson University, Clemson, SC 29631, USA.; Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA.
المصدر: Micromachines [Micromachines (Basel)] 2024 Jun 30; Vol. 15 (7). Date of Electronic Publication: 2024 Jun 30.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: MDPI Country of Publication: Switzerland NLM ID: 101640903 Publication Model: Electronic Cited Medium: Print ISSN: 2072-666X (Print) Linking ISSN: 2072666X NLM ISO Abbreviation: Micromachines (Basel) Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Basel, Switzerland : MDPI, [2010]-
مستخلص: Laser-inscribed graphene (LIG) is an emerging material for micro-electronic applications and is being used to develop supercapacitors, soft actuators, triboelectric generators, and sensors. The fabrication technique is simple, yet the batch-to-batch variation of LIG quality is not well documented in the literature. In this study, we conduct experiments to characterize batch-to-batch variation in the manufacturing of LIG electrodes for applications in electrochemical sensing. Numerous batches of 36 LIG electrodes were synthesized using a CO 2 laser system on polyimide film. The LIG material was characterized using goniometry, stereomicroscopy, open circuit potentiometry, and cyclic voltammetry. Hydrophobicity and electrochemical screening (cyclic voltammetry) indicate that LIG electrode batch-to-batch variation is less than 5% when using a commercial reference and counter electrode. Metallization of LIG led to a significant increase in peak current and specific capacitance (area between anodic/cathodic curve). However, batch-to-batch variation increased to approximately 30%. Two different platinum electrodeposition techniques were studied, including galvanostatic and frequency-modulated electrodeposition. The study shows that formation of metallized LIG electrodes with high specific capacitance and peak current may come at the expense of high batch variability. This design tradeoff has not been discussed in the literature and is an important consideration if scaling sensor designs for mass use is desired. This study provides important insight into the variation of LIG material properties for scalable development of LIG sensors. Additional studies are needed to understand the underlying mechanism(s) of this variability so that strategies to improve the repeatability may be developed for improving quality control. The dataset from this study is available via an open access repository.
References: ACS Nano. 2019 Jun 25;13(6):7166-7174. (PMID: 31117382)
Biosens Bioelectron. 2012 Apr 15;34(1):165-70. (PMID: 22365749)
ACS Nano. 2019 Mar 26;13(3):3474-3482. (PMID: 30848881)
Anal Chem. 2013 Nov 5;85(21):10255-61. (PMID: 24094044)
ACS Nano. 2022 Jan 25;16(1):15-28. (PMID: 34812606)
Nat Commun. 2014 Dec 10;5:5714. (PMID: 25493446)
Front Sens (Lausanne). 2022;3:. (PMID: 35992634)
Biosensors (Basel). 2022 Jan 20;12(2):. (PMID: 35200316)
ACS Appl Mater Interfaces. 2018 Nov 14;10(45):39124-39133. (PMID: 30284450)
Sci Rep. 2017 Sep 15;7(1):11672. (PMID: 28916744)
Biosens Bioelectron. 2021 May 15;180:113116. (PMID: 33662847)
Mikrochim Acta. 2022 Dec 30;190(1):40. (PMID: 36585475)
Lab Chip. 2017 Jun 27;17(13):2150-2166. (PMID: 28561839)
Mikrochim Acta. 2021 Apr 7;188(5):159. (PMID: 33829346)
Biosensors (Basel). 2018 Apr 24;8(2):. (PMID: 29695046)
Analyst. 2016 Jun 7;141(11):3367-78. (PMID: 27121177)
Materials (Basel). 2023 Sep 22;16(19):. (PMID: 37834499)
Sci Rep. 2024 Apr 5;14(1):7980. (PMID: 38575717)
Biosens Bioelectron. 2021 Dec 1;193:113606. (PMID: 34507206)
Analyst. 2014 Feb 7;139(3):660-7. (PMID: 24336219)
Nano Res. 2021;14(9):3033-3050. (PMID: 33841746)
PLoS One. 2023 Aug 17;18(8):e0290256. (PMID: 37590297)
ACS Nano. 2022 Jul 26;16(7):10088-10129. (PMID: 35786945)
ACS Sens. 2020 Jul 24;5(7):1900-1911. (PMID: 32348124)
Biosens Bioelectron. 2020 Sep 15;164:112272. (PMID: 32553348)
Mikrochim Acta. 2022 Feb 26;189(3):122. (PMID: 35218439)
Adv Mater. 2019 Jan;31(1):e1803621. (PMID: 30368919)
Nanoscale. 2012 Jul 7;4(13):3807-19. (PMID: 22538861)
معلومات مُعتمدة: U01AA029328 National Institute on Alcohol Abuse and Alcoholism of the National Institutes of Health; CBET-2019435 National Science Foundation; 2018-67016-27578 NIFA Agriculture and Food Research Initiative
فهرسة مساهمة: Keywords: LIG; batch; laser-inscribed graphene; manufacturing; scalability; sensor; variation
تواريخ الأحداث: Date Created: 20240727 Latest Revision: 20240729
رمز التحديث: 20240729
مُعرف محوري في PubMed: PMC11279040
DOI: 10.3390/mi15070874
PMID: 39064384
قاعدة البيانات: MEDLINE
الوصف
تدمد:2072-666X
DOI:10.3390/mi15070874