دورية أكاديمية

Sources of PM 10 ionic species in the South-West Mediterranean (Algeria).

التفاصيل البيبلوغرافية
العنوان: Sources of PM 10 ionic species in the South-West Mediterranean (Algeria).
المؤلفون: Lemou A; Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Zone Industrielle, BP 384 Bou-Ismail, Tipaza, Algeria. madjid.des@hotmail.com.; Unité de Recherche en Analyses Physico-Chimiques des Milieux Fluides et Sols - (URAPC-MFS/ CRAPC), 11 Chemin Doudou Mokhtar, Ben Aknoun, Alger, Algeria. madjid.des@hotmail.com.; Laboratoire analyse Organique Fonctionnelle, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene, BP 32, El-Alia, Bab-Ezzouar, 16111, Alger, Algérie. madjid.des@hotmail.com., Rabhi L; Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Zone Industrielle, BP 384 Bou-Ismail, Tipaza, Algeria.; Unité de Recherche en Analyses Physico-Chimiques des Milieux Fluides et Sols - (URAPC-MFS/ CRAPC), 11 Chemin Doudou Mokhtar, Ben Aknoun, Alger, Algeria.; Laboratoire analyse Organique Fonctionnelle, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene, BP 32, El-Alia, Bab-Ezzouar, 16111, Alger, Algérie., Ladji R; Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Zone Industrielle, BP 384 Bou-Ismail, Tipaza, Algeria.; Unité de Recherche en Analyses Physico-Chimiques des Milieux Fluides et Sols - (URAPC-MFS/ CRAPC), 11 Chemin Doudou Mokhtar, Ben Aknoun, Alger, Algeria., Nicolas JB; LSCE, Laboratoire des sciences du climat et de l'environnement, CEA Orme des Merisiers, 91191, Gif-sur-Yvette Cedex, France., Bonnaire N; LSCE, Laboratoire des sciences du climat et de l'environnement, CEA Orme des Merisiers, 91191, Gif-sur-Yvette Cedex, France., Sciare J; The Cyprus Institute, Energy, Environment and Water Research Center, Nicosia, Cyprus., Yassaa N; Laboratoire analyse Organique Fonctionnelle, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene, BP 32, El-Alia, Bab-Ezzouar, 16111, Alger, Algérie.; Commissariat aux Energies Renouvelables et à l'Efficacité Energétique, CEREFE, 23 Rue Docteur Slimane Asselah, Telemly, Algiers, Algeria.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 Aug; Vol. 31 (37), pp. 49514-49528. Date of Electronic Publication: 2024 Jul 30.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Particulate Matter*/analysis , Environmental Monitoring* , Air Pollutants*/analysis , Ions*, Algeria ; Mediterranean Sea ; Seasons
مستخلص: The contents of water-soluble major's ions (MSA, Cl - , NO 3 - , SO 4 2- , Na + , NH 4 + , K + , Mg 2+ , and Ca 2+ ) in the PM 10 particle fraction were investigated thanks to detailed measurements of the main chemical constituents of PM 10 in remote coastal areas in Bou-Ismail; in the South-West of the Mediterranean Sea (Algeria), during a 2-year period; from July 2011 to August 2013, under the framework of the ChArMEx project (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr ). The total water-soluble ion concentrations in PM 10 at the Bou-Ismail measurement station varied from 3.3 µg/m 3 (July 2011) to 49.6 µg/m 3 (March 2012). The annual mean mass concentrations of ions in the PM 10 particulate fraction were Cl -  > Na +  > SO 4 2-  > Mg 2+  > NO 3 -  > Ca 2+  > K +  > NH 4 +  > Oxalate. The change in potassium nss-K + concentrations in PM 10 over the course of a year reveals that biomass burning (BB) has an effect on three separate seasons: the beginning of winter (February and March), the end of summer (August), and the autumn (September and October). The origin periods of biomass burning BB identified employing the mapping of hotspots and fires during periods of August and September 2011, 2012, and 2013 underlined the important fires in the surrounding areas of the Mediterranean Sea (Sardinia Islands from Italy, Corsica from France).
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Alvi MU, Kistler M, Mahmud T et al (2019) The composition and sources of water soluble ions in PM10 at an urban site in the Indo-Gangetic Plain. J Atmos Solar Terr Phys 196:105142. https://doi.org/10.1016/j.jastp.2019.105142. (PMID: 10.1016/j.jastp.2019.105142)
Andreae MO, Andreae TW, Annegarn H et al (1998) Airborne studies of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition. J Geophys Res: Atmos 103:32119–32128. https://doi.org/10.1029/98JD02280. (PMID: 10.1029/98JD02280)
Arimoto R, Duce RA, Savoie DL et al (1996) Relationships among aerosol constituents from Asia and the North Pacific during PEM-West A. J Geophys Res: Atmos 101:2011–2023. https://doi.org/10.1029/95JD01071. (PMID: 10.1029/95JD01071)
Banerjee T, Murari V, Kumar M, Raju MP (2015) Source apportionment of airborne particulates through receptor modeling: Indian scenario. Atmos Res 164–165:167–187. https://doi.org/10.1016/j.atmosres.2015.04.017. (PMID: 10.1016/j.atmosres.2015.04.017)
Bardouki H, Liakakou H, Economou C et al (2003) Chemical composition of size-resolved atmospheric aerosols in the eastern Mediterranean during summer and winter. Atmos Environ 37:195–208. https://doi.org/10.1016/S1352-2310(02)00859-2. (PMID: 10.1016/S1352-2310(02)00859-2)
Becagli S, Anello F, Bommarito C et al (2017) Constraining the ship contribution to the aerosol of the central Mediterranean. Atmos Chem Phys 17:2067–2084. https://doi.org/10.5194/acp-17-2067-2017. (PMID: 10.5194/acp-17-2067-2017)
Błaszczak B, Widziewicz-Rzońca K, Zioła N et al (2018) Chemical characteristics of fine particulate matter in Poland in relation with data from selected rural and urban background stations in Europe. Appl Sci 9. https://doi.org/10.3390/app9010098.
Bougiatioti A, Nenes A, Fountoukis C et al (2011) Size-resolved CCN distributions and activation kinetics of aged continental and marine aerosol. Atmos Chem Phys 11:8791–8808. https://doi.org/10.5194/acp-11-8791-2011. (PMID: 10.5194/acp-11-8791-2011)
Calzolai G, Nava S, Lucarelli F et al (2015) Characterization of PM10 sources in the central Mediterranean. Atmos Chem Phys 15:13939–13955. https://doi.org/10.5194/acp-15-13939-2015. (PMID: 10.5194/acp-15-13939-2015)
Camargo JA, Alonso Á (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ Int 32:831–849. https://doi.org/10.1016/j.envint.2006.05.002. (PMID: 10.1016/j.envint.2006.05.002)
Canha N, Almeida SM, do Freitas MC et al (2014) Particulate matter analysis in indoor environments of urban and rural primary schools using passive sampling methodology. Atmos Environ 83:21–34. https://doi.org/10.1016/j.atmosenv.2013.10.061. (PMID: 10.1016/j.atmosenv.2013.10.061)
Cardell C, Delalieux F, Roumpopoulos K et al (2003) Salt-induced decay in calcareous stone monuments and buildings in a marine environment in SW France. Constr Build Mater 17:165–179. https://doi.org/10.1016/S0950-0618(02)00104-6. (PMID: 10.1016/S0950-0618(02)00104-6)
Choudhary N, Rai A, Kuniyal JC et al (2023) Chemical characterization and source apportionment of PM10 using receptor models over the Himalayan Region of India. Atmosphere 14:880. https://doi.org/10.3390/atmos14050880. (PMID: 10.3390/atmos14050880)
Contini D, Cesari D, Genga A et al (2014) Source apportionment of size-segregated atmospheric particles based on the major water-soluble components in Lecce (Italy). Sci Total Environ 472:248–261. https://doi.org/10.1016/j.scitotenv.2013.10.127. (PMID: 10.1016/j.scitotenv.2013.10.127)
Cuccia E, Massabò D, Ariola V et al (2013) Size-resolved comprehensive characterization of airborne particulate matter. Atmos Environ 67:14–26. https://doi.org/10.1016/j.atmosenv.2012.10.045. (PMID: 10.1016/j.atmosenv.2012.10.045)
Custódio D, Cerqueira M, Alves C et al (2016) A one-year record of carbonaceous components and major ions in aerosols from an urban kerbside location in Oporto, Portugal. Sci Total Environ 562:822–833. https://doi.org/10.1016/j.scitotenv.2016.04.012. (PMID: 10.1016/j.scitotenv.2016.04.012)
Foyo-Moreno I, Alados I, Antón M et al (2014) Estimating aerosol characteristics from solar irradiance measurements at an urban location in southeastern Spain. J Geophys Res: Atmos 119:1845–1859. https://doi.org/10.1002/2013JD020599. (PMID: 10.1002/2013JD020599)
Fuzzi S, Baltensperger U, Carslaw K et al (2015) Particulate matter, air quality and climate: lessons learned and future needs. Atmos Chem Phys 83:8217–8299. https://doi.org/10.5194/acp-15-8217-2015.
Galindo N, Gil-Moltó J, Varea M et al (2013) Seasonal and interannual trends in PM levels and associated inorganic ions in southeastern Spain. Microchem J 110:81–88. https://doi.org/10.1016/j.microc.2013.02.009. (PMID: 10.1016/j.microc.2013.02.009)
Galindo N, Yubero E, Clemente Á et al (2020) PM events and changes in the chemical composition of urban aerosols: a case study in the western Mediterranean. Chemosphere 244:125520. https://doi.org/10.1016/j.chemosphere.2019.125520. (PMID: 10.1016/j.chemosphere.2019.125520)
Gerasopoulos E, Kouvarakis G, Babasakalis P et al (2006) Origin and variability of particulate matter (PM10) mass concentrations over the Eastern Mediterranean. Atmos Environ 40:4679–4690. https://doi.org/10.1016/j.atmosenv.2006.04.020. (PMID: 10.1016/j.atmosenv.2006.04.020)
Gluščić V, Čačković M, Pehnec G, Bešlić I (2020) Ionic composition of PM2.5 particle fraction at a coastal urban background site in Croatia. Atmos Pollut Res 11:2202–2214. https://doi.org/10.1016/j.apr.2020.07.004. (PMID: 10.1016/j.apr.2020.07.004)
Griffin DW, Garrison VH, Herman JR, Shinn EA (2001) African desert dust in the Caribbean atmosphere: Microbiology and public health. Aerobiologia 17:203–213. https://doi.org/10.1023/A:1011868218901. (PMID: 10.1023/A:1011868218901)
Guinot B, Cachier H, Oikonomou K (2007) Geochemical perspectives from a new aerosol chemical mass closure. Atmos Chem Phys 14:1657–1670.  https://doi.org/10.5194/acp-7-1657-2007.
Guo Y, Zhang J, Wang S et al (2011) Long-term characterization of major water-soluble inorganic ions in PM10 in coastal site on the Japan Sea. J Atmos Chem 68:299–316. https://doi.org/10.1007/s10874-012-9223-8. (PMID: 10.1007/s10874-012-9223-8)
Hetland RB, Cassee FR, Refsnes M et al (2004) Release of inflammatory cytokines, cell toxicity and apoptosis in epithelial lung cells after exposure to ambient air particles of different size fractions. Toxicol in Vitro 18:203–212. https://doi.org/10.1016/S0887-2333(03)00142-5. (PMID: 10.1016/S0887-2333(03)00142-5)
Ichinose T, Nishikawa M, Takano H et al (2005) Pulmonary toxicity induced by intratracheal instillation of Asian yellow dust (Kosa) in mice. Environ Toxicol Pharmacol 20:48–56. https://doi.org/10.1016/j.etap.2004.10.009. (PMID: 10.1016/j.etap.2004.10.009)
Jaenicke R (1993) Chapter 1 Tropospheric aerosols. In: Hobbs PV (ed) Aerosol–Cloud–Climate Interactions. Academic Press, pp 1–31.  https://doi.org/10.1016/S0074-6142(08)60210-7.
Jain N, Bhatia A, Pathak H (2014) Emission of air pollutants from crop residue burning in India. Aerosol Air Qual Res 14(1):422–430.  https://doi.org/10.1016/S0074-6142(08)60210-7.
Kaskaoutis DG, Grivas G, Oikonomou K et al (2022) Impacts of severe residential wood burning on atmospheric processing, water-soluble organic aerosol and light absorption, in an inland city of Southeastern Europe. Atmos Environ 280:119139. https://doi.org/10.1016/j.atmosenv.2022.119139.
Kaskaoutis DG, Liakakou E, Grivas G et al (2023) Chemical Composition and levels of concentrations of aerosols in the mediterranean. In: Dulac F, Sauvage S, Hamonou E (eds) Atmospheric Chemistry in the Mediterranean Region. Springer International Publishing, Cham, pp 253–311. (PMID: 10.1007/978-3-031-12741-0_9)
Khan JZ, Sun L, Tian Y et al (2021) Chemical characterization and source apportionment of PM1 and PM2.5 in Tianjin, China: impacts of biomass burning and primary biogenic sources. J Environ Sci 99:196–209. https://doi.org/10.1016/j.jes.2020.06.027. (PMID: 10.1016/j.jes.2020.06.027)
Koçak M, Kubilay N, Mihalopoulos N (2004) Ionic composition of lower tropospheric aerosols at a Northeastern Mediterranean site: implications regarding sources and long-range transport. Atmos Environ 38:2067–2077. https://doi.org/10.1016/j.atmosenv.2004.01.030. (PMID: 10.1016/j.atmosenv.2004.01.030)
Koçak M, Mihalopoulos N, Kubilay N (2007) Chemical composition of the fine and coarse fraction of aerosols in the northeastern Mediterranean. Atmos Environ 41:7351–7368. https://doi.org/10.1016/j.atmosenv.2007.05.011. (PMID: 10.1016/j.atmosenv.2007.05.011)
Koulouri E, Saarikoski S, Theodosi C et al (2008) Chemical composition and sources of fine and coarse aerosol particles in the Eastern Mediterranean. Atmos Environ 42:6542–6550. https://doi.org/10.1016/j.atmosenv.2008.04.010. (PMID: 10.1016/j.atmosenv.2008.04.010)
Kumar P, Yadav S (2016) Seasonal variations in water soluble inorganic ions, OC and EC in PM10 and PM>10 aerosols over Delhi: influence of sources and meteorological factors. Aerosol Air Qual Res 16:1165–1178. https://doi.org/10.4209/aaqr.2015.07.0472. (PMID: 10.4209/aaqr.2015.07.0472)
Lemou A, Rabhi L, Merabet H et al (2020) Chemical characterization of fine particles (PM2.5) at a coastal site in the South Western Mediterranean during the ChArMex experiment. Environ Sci Pollut Res 27:20427–20445. https://doi.org/10.1007/s11356-020-08168-7. (PMID: 10.1007/s11356-020-08168-7)
Luria M, Peleg M, Sharf G et al (1996) Atmospheric sulfur over the east Mediterranean region. J Geophys Res 101:25917–25930. https://doi.org/10.1029/96JD01579. (PMID: 10.1029/96JD01579)
Marmer E, Langmann B (2005) Impact of ship emissions on the Mediterranean summertime pollution and climate: a regional model study. Atmos Environ 39:4659–4669. https://doi.org/10.1016/j.atmosenv.2005.04.014. (PMID: 10.1016/j.atmosenv.2005.04.014)
Meng CC (2016) Characteristics of concentrations and water-soluble inorganic ions in PM2.5 in Handan City, Hebei province, China. Atmos Res 177:133–146.  https://doi.org/10.3390/atmos13101713.
Mihalopoulos N, Kerminen VM, Kanakidou M et al (2007) Formation of particulate sulfur species (sulfate and methanesulfonate) during summer over the Eastern Mediterranean: A modelling approach. Atmos Environ 41:6860–6871. https://doi.org/10.1016/j.atmosenv.2007.04.039. (PMID: 10.1016/j.atmosenv.2007.04.039)
Moroni B, Crocchianti S, Petroselli C et al (2019) Potential source contribution function analysis of long-range transported aerosols in the Central Mediterranean: a comparative study of two background sites in Italy. Rend Lincei Sci Fis Nat 30:337–349. https://doi.org/10.1007/s12210-019-00792-x. (PMID: 10.1007/s12210-019-00792-x)
Park SS, Harrison D, Pancras JP, Ondov JM (2005) Highly time-resolved organic and elemental carbon measurements at the Baltimore Supersite in 2002. J Geophys Res 110:2004JD004610. https://doi.org/10.1029/2004JD004610. (PMID: 10.1029/2004JD004610)
Pérez-Ramírez D, Lyamani H, Olmo FJ et al (2012) Columnar aerosol properties from sun-and-star photometry: statistical comparisons and day-to-night dynamic. Atmos Chem Phys 12:9719–9738. https://doi.org/10.5194/acp-12-9719-2012. (PMID: 10.5194/acp-12-9719-2012)
Perrone MG, Gualtieri M, Ferrero L et al (2010) Seasonal variations in chemical composition and in vitro biological effects of fine PM from Milan. Chemosphere 78:1368–1377. https://doi.org/10.1016/j.chemosphere.2009.12.071. (PMID: 10.1016/j.chemosphere.2009.12.071)
Pey J, Querol X, Alastuey A (2009) Variations of levels and composition of PM10 and PM2.5 at an insular site in the Western Mediterranean. Atmos Res 94:285–299. https://doi.org/10.1016/j.atmosres.2009.06.006. (PMID: 10.1016/j.atmosres.2009.06.006)
Pey J, Querol X, Alastuey A (2010) Discriminating the regional and urban contributions in the North-Western Mediterranean: PM levels and composition. Atmos Environ 44:1587–1596. https://doi.org/10.1016/j.atmosenv.2010.02.005. (PMID: 10.1016/j.atmosenv.2010.02.005)
Pietrogrande MC, Perrone MR, Manarini F et al (2018) PM10 oxidative potential at a Central Mediterranean Site: association with chemical composition and meteorological parameters. Atmos Environ 188:97–111. https://doi.org/10.1016/j.atmosenv.2018.06.013. (PMID: 10.1016/j.atmosenv.2018.06.013)
Querol X, Alastuey A, Pey J et al (2009) Variability in regional background aerosols within the Mediterranean. Atmos Chem Phys 17:4575–4591.  https://doi.org/10.5194/acp-9-4575-2009  .
Rodríguez S, Querol X, Alastuey A, Mantilla E (2002) Origin of high summer PM10 and TSP concentrations at rural sites in Eastern Spain. Atmos Environ 36:3101–3112. https://doi.org/10.1016/S1352-2310(02)00256-X. (PMID: 10.1016/S1352-2310(02)00256-X)
Rodriguez-Navarro C, di Lorenzo F, Elert K (2018) Mineralogy and physicochemical features of Saharan dust wet deposited in the Iberian Peninsula during an extreme red rain event. Atmos Chem Phys 18:10089–10122. https://doi.org/10.5194/acp-18-10089-2018. (PMID: 10.5194/acp-18-10089-2018)
Saha A, Mallet M, Roger JC et al (2008) One year measurements of aerosol optical properties over an urban coastal site: effect on local direct radiative forcing. Atmos Res 90:195–202. https://doi.org/10.1016/j.atmosres.2008.02.003. (PMID: 10.1016/j.atmosres.2008.02.003)
Saliba NA, Kouyoumdjian H, Roumié M (2007) Effect of local and long-range transport emissions on the elemental composition of PM10-2.5 and PM2.5 in Beirut. Atmos Environ 41:6497–6509. https://doi.org/10.1016/j.atmosenv.2007.04.032. (PMID: 10.1016/j.atmosenv.2007.04.032)
Salma I, Balásházy I, Winkler-Heil R et al (2002) Effect of particle mass size distribution on the deposition of aerosols in the human respiratory system. J Aerosol Sci 33:119–132. https://doi.org/10.1016/S0021-8502(01)00154-9.
Sciare J, Oikonomou K, Cachier H et al (2005) Aerosol mass closure and reconstruction of the light scattering coefficient over the Eastern Mediterranean Sea during the MINOS campaign. Atmos Chem Phys 13:2253–2265. (PMID: 10.5194/acp-5-2253-2005)
Sciare J, Oikonomou K, Favez O et al (2008) Long-term measurements of carbonaceous aerosols in the Eastern Mediterranean: evidence of long-range transport of biomass burning. Atmos Chem Phys 13:551–5563.
Slezakova K (2011) Air pollution from traffic emissions in Oporto, Portugal: Health and environmental implications. Microchem J 99:51–59. (PMID: 10.1016/j.microc.2011.03.010)
Theodosi C, Grivas G, Zarmpas P et al (2011) Mass and chemical composition of size-segregated aerosols (PM 1, PM 2.5, PM 10) over Athens, Greece: local versus regional sources. Atmos Chem Phys 11:11895–11911. https://doi.org/10.5194/acp-11-11895-2011. (PMID: 10.5194/acp-11-11895-2011)
Theodosi C, Panagiotopoulos C, Nouara A et al (2018) Sugars in atmospheric aerosols over the Eastern Mediterranean. Prog Oceanogr 163:70–81. https://doi.org/10.1016/j.pocean.2017.09.001. (PMID: 10.1016/j.pocean.2017.09.001)
Tripathee L, Kang S, Rupakheti D et al (2016) Water-soluble ionic composition of aerosols at urban location in the foothills of Himalaya, Pokhara Valley, Nepal. Atmosphere 7:102. https://doi.org/10.3390/atmos7080102. (PMID: 10.3390/atmos7080102)
van der Werf GR, Randerson JT, Giglio L et al (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos Chem Phys 6:3423–3441. https://doi.org/10.5194/acp-6-3423-200610.5194/acpd-6-3175-2006. (PMID: 10.5194/acp-6-3423-200610.5194/acpd-6-3175-2006)
Voutsa D, Samara C, Manoli E et al (2014) Ionic composition of PM2.5 at urban sites of northern Greece: secondary inorganic aerosol formation. Environ Sci Pollut Res 21:4995–5006. https://doi.org/10.1007/s11356-013-2445-8. (PMID: 10.1007/s11356-013-2445-8)
Wang H, Shooter D (2001) Water soluble ions of atmospheric aerosols in three New Zealand cities: seasonal changes and sources. Atmos Environ 35:6031–6040. https://doi.org/10.1016/S1352-2310(01)00437-X. (PMID: 10.1016/S1352-2310(01)00437-X)
Wang Y, Zhuang G, Zhang X et al (2006) The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai. Atmos Environ 40:2935–2952. https://doi.org/10.1016/j.atmosenv.2005.12.051. (PMID: 10.1016/j.atmosenv.2005.12.051)
Zhang R, Jing J, Tao J et al (2013) Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective. Atmos Chem Phys 13:7053–7074. https://doi.org/10.5194/acp-13-7053-2013. (PMID: 10.5194/acp-13-7053-2013)
Zhou J, Xing Z, Deng J, Du K (2016) Characterizing and sourcing ambient PM2.5 over key emission regions in China I: water-soluble ions and carbonaceous fractions. Atmos Environ 135:20–30. https://doi.org/10.1016/j.atmosenv.2016.03.054. (PMID: 10.1016/j.atmosenv.2016.03.054)
فهرسة مساهمة: Keywords: Aerosols; Ions; PM10; Sea salt; The South-West Mediterranean (Algeria)
المشرفين على المادة: 0 (Particulate Matter)
0 (Air Pollutants)
0 (Ions)
تواريخ الأحداث: Date Created: 20240730 Date Completed: 20240814 Latest Revision: 20240814
رمز التحديث: 20240814
DOI: 10.1007/s11356-024-34449-6
PMID: 39080165
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-024-34449-6