دورية أكاديمية

Comparative structure and evolution of the organellar genomes of Padina usoehtunii (Dictyotales) with the brown algal crown radiation clade.

التفاصيل البيبلوغرافية
العنوان: Comparative structure and evolution of the organellar genomes of Padina usoehtunii (Dictyotales) with the brown algal crown radiation clade.
المؤلفون: Liu YJ; Ocean School, Yantai University, Yantai, 264005, China., Zhang TY; Ocean School, Yantai University, Yantai, 264005, China., Wang QQ; Ocean School, Yantai University, Yantai, 264005, China., Draisma SGA; Excellence Center for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand. stefano.a@psu.ac.th., Hu ZM; Ocean School, Yantai University, Yantai, 264005, China. huzimin9712@163.com.
المصدر: BMC genomics [BMC Genomics] 2024 Jul 31; Vol. 25 (1), pp. 747. Date of Electronic Publication: 2024 Jul 31.
نوع المنشور: Journal Article; Comparative Study
اللغة: English
بيانات الدورية: Publisher: BioMed Central Country of Publication: England NLM ID: 100965258 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2164 (Electronic) Linking ISSN: 14712164 NLM ISO Abbreviation: BMC Genomics Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : BioMed Central, [2000-
مواضيع طبية MeSH: Phaeophyceae*/genetics , Phylogeny* , Evolution, Molecular* , Genome, Chloroplast*, Genome, Mitochondrial ; Inverted Repeat Sequences/genetics ; Chloroplasts/genetics
مستخلص: Background: Organellar genomes have become increasingly essential for studying genetic diversity, phylogenetics, and evolutionary histories of seaweeds. The order Dictyotales (Dictyotophycidae), a highly diverse lineage within the Phaeophyceae, is long-term characterized by a scarcity of organellar genome datasets compared to orders of the brown algal crown radiation (Fucophycidae).
Results: We sequenced the organellar genomes of Padina usoehtunii, a representative of the order Dictyotales, to investigate the structural and evolutionary differences by comparing to five other major brown algal orders. Our results confirmed previously reported findings that the rate of structural rearrangements in chloroplast genomes is higher than that in mitochondria, whereas mitochondrial sequences exhibited a higher substitution rate compared to chloroplasts. Such evolutionary patterns contrast with land plants and green algae. The expansion and contraction of the inverted repeat (IR) region in the chloroplast correlated with the changes in the number of boundary genes. Specifically, the size of the IR region influenced the position of the boundary gene rpl21, with complete rpl21 genes found within the IR region in Dictyotales, Sphacelariales and Ectocarpales, while the rpl21 genes in Desmarestiales, Fucales, and Laminariales span both the IR and short single copy (SSC) regions. The absence of the rbcR gene in the Dictyotales may indicate an endosymbiotic transfer from the chloroplast to the nuclear genome. Inversion of the SSC region occurred at least twice in brown algae. Once in a lineage only represented by the Ectocarpales in the present study and once in a lineage only represented by the Fucales. Photosystem genes in the chloroplasts experienced the strongest signature of purifying selection, while ribosomal protein genes in both chloroplasts and mitochondria underwent a potential weak purifying selection.
Conclusions: Variations in chloroplast genome structure among different brown algal orders are evolutionarily linked to their phylogenetic positions in the Phaeophyceae tree. Chloroplast genomes harbor more structural rearrangements than the mitochondria, despite mitochondrial genes exhibiting faster mutation rates. The position and the change in the number of boundary genes likely shaped the IR regions in the chloroplast, and the produced structural variability is important mechanistically to create gene diversity in brown algal chloroplast.
(© 2024. The Author(s).)
References: Sci Rep. 2020 Feb 06;10(1):2048. (PMID: 32029782)
Bioinformatics. 2017 Aug 15;33(16):2583-2585. (PMID: 28398459)
Bioinformatics. 2014 Aug 1;30(15):2114-20. (PMID: 24695404)
PeerJ. 2023 May 10;11:e15326. (PMID: 37193025)
BMC Genomics. 2022 Dec 3;23(1):800. (PMID: 36463111)
Syst Biol. 2012 May;61(3):539-42. (PMID: 22357727)
J Phycol. 2017 Feb;53(1):17-31. (PMID: 27454456)
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10177-84. (PMID: 25814499)
Nucleic Acids Res. 2016 Jul 8;44(W1):W54-7. (PMID: 27174935)
Mol Biol Evol. 2013 May;30(5):1188-95. (PMID: 23418397)
Syst Biol. 2007 Aug;56(4):564-77. (PMID: 17654362)
BMC Genomics. 2022 Sep 02;23(1):629. (PMID: 36050627)
Am J Bot. 2014 Apr;101(4):722-9. (PMID: 24699541)
PLoS One. 2011;6(9):e24457. (PMID: 21935411)
Genes (Basel). 2020 Sep 25;11(10):. (PMID: 32992972)
Mol Ecol. 2011 Sep;20(18):3894-909. (PMID: 21851438)
Genome Res. 2002 Sep;12(9):1350-6. (PMID: 12213772)
Nature. 2010 Jun 03;465(7298):617-21. (PMID: 20520714)
BMC Genomics. 2013 Aug 05;14:534. (PMID: 23915326)
Mol Biol Evol. 2013 Apr;30(4):772-80. (PMID: 23329690)
Mol Plant. 2020 Aug 3;13(8):1194-1202. (PMID: 32585190)
Genome Biol Evol. 2021 Jul 06;13(7):. (PMID: 34061182)
Mol Phylogenet Evol. 2012 Oct;65(1):339-44. (PMID: 22760027)
Genome Biol Evol. 2018 Nov 1;10(11):2961-2972. (PMID: 30364957)
Mol Biol Evol. 2007 Aug;24(8):1586-91. (PMID: 17483113)
Mol Ecol Resour. 2020 Jan;20(1):348-355. (PMID: 31599058)
Mol Phylogenet Evol. 2007 Nov;45(2):547-63. (PMID: 17644003)
Mol Phylogenet Evol. 2018 Sep;126:181-195. (PMID: 29684597)
Bioinformatics. 1999 May;15(5):426-7. (PMID: 10366664)
Front Genet. 2021 Sep 27;12:724734. (PMID: 34646303)
Mol Phylogenet Evol. 2008 Dec;49(3):827-31. (PMID: 18838124)
J Mol Evol. 2019 Jan;87(1):16-26. (PMID: 30604018)
PLoS One. 2012;7(8):e43111. (PMID: 22912801)
Mol Biol Evol. 2001 Jun;18(6):1139-42. (PMID: 11371603)
J Phycol. 2011 Oct;47(5):1193-209. (PMID: 27028247)
J Phycol. 2019 Oct;55(5):1166-1180. (PMID: 31325913)
BMC Evol Biol. 2019 Jan 11;19(1):20. (PMID: 30634905)
Theory Biosci. 2005 Aug;124(1):1-24. (PMID: 17046345)
Mol Biol Evol. 2000 Apr;17(4):576-83. (PMID: 10742049)
BMC Evol Biol. 2017 Dec 07;17(1):246. (PMID: 29216823)
J Phycol. 2009 Aug;45(4):828-37. (PMID: 27034212)
Mol Biol Evol. 2015 Jan;32(1):268-74. (PMID: 25371430)
Genome Res. 2004 Jul;14(7):1394-403. (PMID: 15231754)
Plant Physiol Biochem. 2023 Mar;196:236-245. (PMID: 36731285)
Microbiol Mol Biol Rev. 2000 Dec;64(4):786-820. (PMID: 11104819)
Mol Phylogenet Evol. 2010 Aug;56(2):659-74. (PMID: 20412862)
Arch Virol. 2021 Feb;166(2):461-474. (PMID: 33392821)
Mol Phylogenet Evol. 2017 May;110:81-92. (PMID: 28279809)
Nat Methods. 2017 Jun;14(6):587-589. (PMID: 28481363)
BMC Genomics. 2010 Dec 20;11:718. (PMID: 21171997)
Mar Biotechnol (NY). 2017 Dec;19(6):627-637. (PMID: 29164355)
Genes Genomics. 2018 Jul;40(7):767-780. (PMID: 29934813)
Mol Phylogenet Evol. 2014 Feb;71:36-40. (PMID: 24216019)
New Phytol. 2010 Apr;186(2):299-317. (PMID: 20180912)
Genome Biol Evol. 2015 Apr 13;7(5):1227-34. (PMID: 25869380)
J Mol Biol. 1990 Oct 5;215(3):403-10. (PMID: 2231712)
Mol Gen Genet. 1996 Aug 27;252(1-2):195-206. (PMID: 8804393)
BMC Genomics. 2008 May 08;9:211. (PMID: 18462506)
Syst Biol. 2010 May;59(3):307-21. (PMID: 20525638)
فهرسة مساهمة: Keywords: Padina usoehtunii; Chloroplast genome; Dictyotales; Mitochondrial genome; Phaeophyceae; Phylogeny; Sequence variation; Structural variation
تواريخ الأحداث: Date Created: 20240730 Date Completed: 20240731 Latest Revision: 20240802
رمز التحديث: 20240802
مُعرف محوري في PubMed: PMC11290263
DOI: 10.1186/s12864-024-10616-4
PMID: 39080531
قاعدة البيانات: MEDLINE
الوصف
تدمد:1471-2164
DOI:10.1186/s12864-024-10616-4