دورية أكاديمية

The photoreactivation of 6 - 4 photoproducts in chloroplast and nuclear DNA depends on the amount of the Arabidopsis UV repair defective 3 protein.

التفاصيل البيبلوغرافية
العنوان: The photoreactivation of 6 - 4 photoproducts in chloroplast and nuclear DNA depends on the amount of the Arabidopsis UV repair defective 3 protein.
المؤلفون: Zgłobicki P; Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland., Hermanowicz P; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, 30-387, Poland., Kłodawska K; Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland., Bażant A; Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland., Łabuz J; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, 30-387, Poland., Grzyb J; Department of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław, 50-383, Poland., Dutka M; Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland., Kowalska E; Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland., Jawor J; Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland., Leja K; Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland.; Doctoral School of Exact and Natural Sciences, Jagiellonian University, prof. S. Łojasiewicza 11, Kraków, 30-348, Poland., Banaś AK; Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland. a_katarzyna.banas@uj.edu.pl.
المصدر: BMC plant biology [BMC Plant Biol] 2024 Jul 30; Vol. 24 (1), pp. 723. Date of Electronic Publication: 2024 Jul 30.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: BioMed Central Country of Publication: England NLM ID: 100967807 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2229 (Electronic) Linking ISSN: 14712229 NLM ISO Abbreviation: BMC Plant Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : BioMed Central, [2001-
مواضيع طبية MeSH: Arabidopsis*/genetics , Arabidopsis*/radiation effects , Arabidopsis*/metabolism , Arabidopsis Proteins*/metabolism , Arabidopsis Proteins*/genetics , Cell Nucleus*/metabolism , Cell Nucleus*/radiation effects , Deoxyribodipyrimidine Photo-Lyase*/metabolism , Deoxyribodipyrimidine Photo-Lyase*/genetics , Plants, Genetically Modified* , DNA Repair*, Ultraviolet Rays ; DNA, Plant/metabolism ; DNA, Plant/genetics ; Pyrimidine Dimers/metabolism ; Pyrimidine Dimers/genetics ; DNA, Chloroplast/genetics ; DNA, Chloroplast/metabolism ; Chloroplasts/metabolism ; DNA Damage
مستخلص: Background: 6 - 4 photoproducts are the second most common UV-induced DNA lesions after cyclobutane pyrimidine dimers. In plants, they are mainly repaired by photolyases in a process called photoreactivation. While pyrimidine dimers can be deleterious, leading to mutagenesis or even cell death, 6 - 4 photoproducts can activate specific signaling pathways. Therefore, their removal is particularly important, especially for plants exposed to high UV intensities due to their sessile nature. Although photoreactivation in nuclear DNA is well-known, its role in plant organelles remains unclear. In this paper we analyzed the activity and localization of GFP-tagged AtUVR3, the 6 - 4 photoproduct specific photolyase.
Results: Using transgenic Arabidopsis with different expression levels of AtUVR3, we confirmed a positive trend between these levels and the rate of 6 - 4 photoproduct removal under blue light. Measurements of 6 - 4 photoproduct levels in chloroplast and nuclear DNA of wild type, photolyase mutants, and transgenic plants overexpressing AtUVR3 showed that the photoreactivation is the main repair pathway responsible for the removal of these lesions in both organelles. The GFP-tagged AtUVR3 was predominantly located in nuclei with a small fraction present in chloroplasts and mitochondria of transgenic Arabidopsis thaliana and Nicotiana tabacum lines. In chloroplasts, this photolyase co-localized with the nucleoid marked by plastid envelope DNA binding protein.
Conclusions: Photolyases are mainly localized in plant nuclei, with only a small fraction present in chloroplasts and mitochondria. Despite this unbalanced distribution, photoreactivation is the primary mechanism responsible for the removal of 6 - 4 photoproducts from nuclear and chloroplast DNA in adult leaves. The amount of the AtUVR3 photolyase is the limiting factor influencing the photoreactivation rate of 6 - 4 photoproducts. The efficient photoreactivation of 6 - 4 photoproducts in 35S: AtUVR3-GFP Arabidopsis and Nicotiana tabacum is a promising starting point to evaluate whether transgenic crops overproducing this photolyase are more tolerant to high UV irradiation and how they respond to other abiotic and biotic stresses under field conditions.
(© 2024. The Author(s).)
References: Nature. 2000 Dec 14;408(6814):796-815. (PMID: 11130711)
Plant Cell Physiol. 2021 Sep 24;62(4):693-707. (PMID: 33594440)
Mol Genet Genomics. 2003 Jul;269(4):508-16. (PMID: 12764611)
Plant J. 1994 Sep;6(3):447-55. (PMID: 7920724)
Appl Microbiol Biotechnol. 2020 Aug;104(16):7037-7050. (PMID: 32572574)
Biochemistry. 1985 Apr 9;24(8):1849-55. (PMID: 3893538)
Plant Cell Physiol. 2002 Mar;43(3):342-9. (PMID: 11917089)
J Mol Biol. 1975 Nov 15;98(4):781-95. (PMID: 1104879)
EMBO J. 1993 Feb;12(2):555-61. (PMID: 8440245)
Proc Natl Acad Sci U S A. 2020 Jun 9;117(23):12806-12816. (PMID: 32444488)
Plant J. 2014 Sep;79(6):951-63. (PMID: 24947012)
J Exp Bot. 2014 Jun;65(11):2949-61. (PMID: 24591052)
Plant Cell Physiol. 2000 May;41(5):644-8. (PMID: 10929948)
Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10124-8. (PMID: 1946433)
Plant J. 1998 Dec;16(6):735-43. (PMID: 10069079)
Plant Cell Physiol. 2005 Apr;46(4):649-60. (PMID: 15746158)
J Exp Bot. 2014 Jul;65(12):3263-76. (PMID: 24821953)
Photochem Photobiol. 1991 Aug;54(2):225-32. (PMID: 1780359)
Photochem Photobiol Sci. 2023 Jun;22(6):1309-1321. (PMID: 36729358)
Plant Cell. 2010 May;22(5):1498-515. (PMID: 20511297)
Plant Mol Biol. 1995 Dec;29(6):1267-77. (PMID: 8616223)
Biochemistry. 2004 Dec 7;43(48):15103-10. (PMID: 15568802)
Plant Physiol. 1991 Feb;95(2):536-43. (PMID: 16668017)
Plant Cell Physiol. 2015 Oct;56(10):2014-23. (PMID: 26272552)
Plant J. 2000 Jul;23(2):255-65. (PMID: 10929119)
Plant Cell. 2000 Sep;12(9):1569-78. (PMID: 11006332)
Planta. 2009 Aug;230(3):505-15. (PMID: 19521716)
J Bacteriol. 1990 Dec;172(12):6885-91. (PMID: 2254263)
Plant J. 2020 May;102(4):730-746. (PMID: 31856320)
Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7441-5. (PMID: 9750104)
Genes (Basel). 2020 Nov 04;11(11):. (PMID: 33158066)
Nat Commun. 2016 Dec 01;7:13522. (PMID: 27905394)
Carcinogenesis. 1997 Apr;18(4):811-6. (PMID: 9111219)
Biosci Biotechnol Biochem. 2000 Jun;64(6):1288-91. (PMID: 10923805)
Plant J. 1993 Oct;4(4):705-9. (PMID: 8252071)
J Exp Bot. 2001 Apr;52(356):529-39. (PMID: 11373302)
Plant J. 2011 May;66(3):433-42. (PMID: 21251107)
Nucleic Acids Res. 1998 Jan 15;26(2):638-44. (PMID: 9421527)
Front Plant Sci. 2016 Feb 04;7:57. (PMID: 26870072)
DNA Repair (Amst). 2008 Feb 1;7(2):303-12. (PMID: 18096446)
Biophys J. 1998 Jun;74(6):2840-9. (PMID: 9635738)
J Exp Bot. 2012 Feb;63(4):1763-71. (PMID: 22371325)
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):21023-7. (PMID: 19074258)
Mutat Res. 1992 Mar;273(2):231-6. (PMID: 1372106)
Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:75-100. (PMID: 15012283)
Genes (Basel). 2020 Dec 02;11(12):. (PMID: 33276692)
Nucleic Acids Res. 1987 Feb 11;15(3):1109-20. (PMID: 3547332)
Plant Cell. 1997 Feb;9(2):199-207. (PMID: 9061951)
J Photochem Photobiol B. 2001 Dec 31;65(2-3):127-35. (PMID: 11809370)
Photochem Photobiol. 2017 Jan;93(1):207-215. (PMID: 27935042)
BMC Plant Biol. 2009 May 29;9:64. (PMID: 19480655)
Genetics. 2005 Dec;171(4):1941-50. (PMID: 15965242)
Mol Cell Biol. 1990 Sep;10(9):4630-7. (PMID: 2117700)
Cell. 2017 Nov 30;171(6):1316-1325.e12. (PMID: 29129375)
Plant Cell Physiol. 2018 Jan 1;59(1):44-57. (PMID: 29069446)
Biochem Biophys Res Commun. 2004 Aug 6;320(4):1133-8. (PMID: 15249207)
J Exp Bot. 2002 May;53(371):1005-15. (PMID: 11971912)
Nucleic Acids Res. 2004 May 18;32(9):2760-7. (PMID: 15150342)
J Exp Bot. 2016 Sep;67(17):4963-78. (PMID: 27406783)
Mutat Res. 2000 Jun 30;451(1-2):25-37. (PMID: 10915863)
Plant J. 2010 Aug;63(3):392-404. (PMID: 20487384)
Mutat Res. 2018 May;809:13-19. (PMID: 29625375)
Plant Physiol. 1996 May;111(1):19-25. (PMID: 12226273)
Plant J. 2007 Apr;50(1):70-9. (PMID: 17397507)
Plant Physiol. 2005 Sep;139(1):5-17. (PMID: 16166256)
Methods Mol Biol. 2011;774:151-70. (PMID: 21822838)
Photochem Photobiol Sci. 2020 Dec 1;19(12):1717-1729. (PMID: 33237047)
Plant Physiol. 2002 May;129(1):64-71. (PMID: 12011338)
Plant J. 2009 Jul;59(1):150-62. (PMID: 19309457)
Proc Natl Acad Sci U S A. 1987 Jun;84(11):3782-6. (PMID: 3473483)
معلومات مُعتمدة: 2016/22/E/NZ3/00326 National Science Centre, Poland
فهرسة مساهمة: Keywords: (6 − 4) pyrimidine–pyrimidone photoproduct; Arabidopsis; AtUVR3; Chloroplast nucleoid; Photolyase; Photoreactivation
المشرفين على المادة: 0 (Arabidopsis Proteins)
EC 4.1.99.3 (Deoxyribodipyrimidine Photo-Lyase)
0 (DNA, Plant)
0 (Pyrimidine Dimers)
0 (DNA, Chloroplast)
تواريخ الأحداث: Date Created: 20240730 Date Completed: 20240731 Latest Revision: 20240909
رمز التحديث: 20240909
مُعرف محوري في PubMed: PMC11287969
DOI: 10.1186/s12870-024-05439-0
PMID: 39080534
قاعدة البيانات: MEDLINE
الوصف
تدمد:1471-2229
DOI:10.1186/s12870-024-05439-0