دورية أكاديمية

Genomic selection optimization in blueberry: Data-driven methods for marker and training population design.

التفاصيل البيبلوغرافية
العنوان: Genomic selection optimization in blueberry: Data-driven methods for marker and training population design.
المؤلفون: Adunola P; Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, Florida, USA., Ferrão LFV; Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, Florida, USA., Benevenuto J; Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, Florida, USA., Azevedo CF; Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, Florida, USA.; Statistics Department, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil., Munoz PR; Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, Florida, USA.
المصدر: The plant genome [Plant Genome] 2024 Aug 01, pp. e20488. Date of Electronic Publication: 2024 Aug 01.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Crop Science Society of America Country of Publication: United States NLM ID: 101273919 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1940-3372 (Electronic) Linking ISSN: 19403372 NLM ISO Abbreviation: Plant Genome Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Madison, WI : Crop Science Society of America
مستخلص: Genomic prediction is a modern approach that uses genome-wide markers to predict the genetic merit of unphenotyped individuals. With the potential to reduce the breeding cycles and increase the selection accuracy, this tool has been designed to rank genotypes and maximize genetic gains. Despite this importance, its practical implementation in breeding programs requires critical allocation of resources for its application in a predictive framework. In this study, we integrated genetic and data-driven methods to allocate resources for phenotyping and genotyping tailored to genomic prediction. To this end, we used a historical blueberry (Vaccinium corymbosun L.) breeding dataset containing more than 3000 individuals, genotyped using probe-based target sequencing and phenotyped for three fruit quality traits over several years. Our contribution in this study is threefold: (i) for the genotyping resource allocation, the use of genetic data-driven methods to select an optimal set of markers slightly improved prediction results for all the traits; (ii) for the long-term implication, we carried out a simulation study and emphasized that data-driven method results in a slight improvement in genetic gain over 30 cycles than random marker sampling; and (iii) for the phenotyping resource allocation, we compared different optimization algorithms to select training population, showing that it can be leveraged to increase predictive performances. Altogether, we provided a data-oriented decision-making approach for breeders by demonstrating that critical breeding decisions associated with resource allocation for genomic prediction can be tackled through a combination of statistics and genetic methods.
(© 2024 The Author(s). The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.)
References: Akdemir, D., Rio, S., & Isidro y Sánchez, J. (2021). TrainSel: An R package for selection of training populations. Frontiers in Genetics, 12, 655287. https://doi.org/10.3389/fgene.2021.655287.
Amadeu, R. R., Ferrão, L. F. V., Oliveira, I. D. B., Benevenuto, J., Endelman, J. B., & Munoz, P. R. (2020). Impact of dominance effects on autotetraploid genomic prediction. Crop Science, 60, 656–665. https://doi.org/10.1002/csc2.20075.
Atanda, S. A., Olsen, M., Burgueño, J., Crossa, J., Dzidzienyo, D., Beyene, Y., Gowda, M., Dreher, K., Zhang, X., Prasanna, B. M., Tongoona, P., Danquah, E. Y., Olaoye, G., & Robbins, K. R. (2021). Maximizing efficiency of genomic selection in CIMMYT's tropical maize breeding program. Theoretical and Applied Genetics, 134, 279–294. https://doi.org/10.1007/s00122‐020‐03696‐9.
Ballesta, P., Bush, D., Silva, F. F., & Mora, F. (2020). Genomic predictions using low‐density SNP markers, pedigree and GWAS information: A case study with the non‐model species Eucalyptus cladocalyx. Plants, 9, 99. https://doi.org/10.3390/plants9010099.
Benevenuto, J., Ferrão, L. F. V., Amadeu, R. R., & Munoz, P. (2019). How can a high‐quality genome assembly help plant breeders? GigaScience, 8, giz068. https://doi.org/10.1093/gigascience/giz068.
Bijma, P. (2012). Long‐term genomic improvement—New challenges for population genetics. Journal of Animal Breeding and Genetics, 129, 1–2. https://doi.org/10.1111/j.1439‐0388.2011.00985.x.
Calus, M. P. L., & Vandenplas, J. (2018). SNPrune: An efficient algorithm to prune large SNP array and sequence datasets based on high linkage disequilibrium. Genetics Selection Evolution, 50, Article 34. https://doi.org/10.1186/s12711‐018‐0404‐z.
Cappai, F., Amadeu, R. R., Benevenuto, J., Cullen, R., Garcia, A., Grossman, A., Ferrão, L. F. V., & Munoz, P. (2020). High‐resolution linkage map and QTL analyses of fruit firmness in autotetraploid blueberry. Frontiers in Plant Science, 11, 562171. https://doi.org/10.3389/fpls.2020.562171.
Colantonio, V., Ferrão, L. F. V., Tieman, D. M., Bliznyuk, N., Sims, C., Klee, H. J., Munoz, P., & Resende, M. F. R. (2022). Metabolomic selection for enhanced fruit flavor. Proceedings of the National Academy of Sciences, 119, e2115865119. https://doi.org/10.1073/pnas.2115865119.
Colle, M., Leisner, C. P., Wai, C. M., Ou, S., Bird, K. A., Wang, J., Wisecaver, J. H., Yocca, A. E., Alger, E. I., Tang, H., Xiong, Z., Callow, P., Ben‐Zvi, G., Brodt, A., Baruch, K., Swale, T., Shiue, L., Song, G., Childs, K. L., … Edger, P. P. (2019). Haplotype‐phased genome and evolution of phytonutrient pathways of tetraploid blueberry. GigaScience, 8, giz012. https://doi.org/10.1093/gigascience/giz012.
De Bem Oliveira, I., Amadeu, R. R., Ferrão, L. F. V., & Muñoz, P. R. (2020). Optimizing whole‐genomic prediction for autotetraploid blueberry breeding. Heredity, 125, 437–448. https://doi.org/10.1038/s41437‐020‐00357‐x.
De Bem Oliveira, I., Resende, M. F. R., Ferrão, L. F. V., Amadeu, R. R., Endelman, J. B., Kirst, M., Coelho, A. S. G., & Munoz, P. R. (2019). Genomic prediction of autotetraploids; influence of relationship matrices, allele dosage, and continuous genotyping calls in phenotype prediction. G3 Genes|Genomes|Genetics, 9, 1189–1198. https://doi.org/10.1534/g3.119.400059.
De Rezende Neves, H. H., Carvalheiro, R., & De Queiroz, S. A. (2018). Trait‐specific long‐term consequences of genomic selection in beef cattle. Genetica, 146, 85–99. https://doi.org/10.1007/s10709‐017‐9999‐1.
DoVale, J. C., Carvalho, H. F., Sabadin, F., & Fritsche‐Neto, R. (2021). Reduction of genotyping marker density for genomic selection is not an affordable approach to long‐term breeding in cross‐pollinated crops. BioRxiv.
Endelman, J. B. (2011). Ridge regression and other kernels for genomic selection with R package rrBLUP. The Plant Genome, 4, 250–255. https://doi.org/10.3835/plantgenome2011.08.0024.
Faux, A., Gorjanc, G., Gaynor, R. C., Battagin, M., Edwards, S. M., Wilson, D. L., Hearne, S. J., Gonen, S., & Hickey, J. M. (2016). AlphaSim: Software for breeding program simulation. The Plant Genome, 9, plantgenome2016.02.0013. https://doi.org/10.3835/plantgenome2016.02.0013.
Ferrão, L. F. V., Amadeu, R. R., Benevenuto, J., de Bem Oliveira, I., & Munoz, P. R. (2021). Genomic selection in an outcrossing autotetraploid fruit crop: Lessons from blueberry breeding. Frontiers in Plant Science, 12, 676326. https://doi.org/10.3389/fpls.2021.676326.
Ferrão, L. F. V., Benevenuto, J., de Bem Oliveira, I., Cellon, C., Olmstead, J., Kirst, M., Resende, M. F. R., & Munoz, P. (2018). Insights into the genetic basis of blueberry fruit‐related traits using diploid and polyploid models in a GWAS context. Frontiers in Ecology and Evolution, 6, Article 107. https://doi.org/10.3389/fevo.2018.00107.
Ferrão, L. F. V., Johnson, T. S., Benevenuto, J., Edger, P. P., Colquhoun, T. A., & Munoz, P. R. (2020). Genome‐wide association of volatiles reveals candidate loci for blueberry flavor. New Phytologist, 226, 1725–1737. https://doi.org/10.1111/nph.16459.
Gerard, D., Ferrão, L. F. V., Garcia, A. A. F., & Stephens, M. (2018). Genotyping polyploids from messy sequencing data. Genetics, 210, 789–807. https://doi.org/10.1534/genetics.118.301468.
Hemingway, J., Schnebly, S. R., & Rajcan, I. (2021). Accuracy of genomic prediction for seed oil concentration in high‐oleic soybean populations using a low‐density marker panel. Crop Science, 61, 4012–4021. https://doi.org/10.1002/csc2.20607.
Heredia‐Langner, A., Carlyle, W. M., Montgomery, D. C., Borror, C. M., & Runger, G. C. (2003). Genetic algorithms for the construction of D‐optimal designs. Journal of Quality Technology, 35, 28–46. https://doi.org/10.1080/00224065.2003.11980189.
Hickey, J. M., Chiurugwi, T., Mackay, I., & Powell, W. (2017). Implementing genomic selection in CGIAR breeding programs workshop participants. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nature Genetics, 49, 1297–1303. https://doi.org/10.1038/ng.3920.
Isidro, J., Jannink, J.‐L., Akdemir, D., Poland, J., Heslot, N., & Sorrells, M. E. (2015). Training set optimization under population structure in genomic selection. Theoretical and Applied Genetics, 128, 145–158. https://doi.org/10.1007/s00122‐014‐2418‐4.
Jannink, J.‐L. (2010). Dynamics of long‐term genomic selection. Genetics Selection Evolution, 42, Article 35. https://doi.org/10.1186/1297‐9686‐42‐35.
Kainer, D., Stone, E. A., Padovan, A., Foley, W. J., & Külheim, C. (2018). Accuracy of genomic prediction for foliar terpene traits in Eucalyptus polybractea. G3 Genes|Genomes|Genetics, 8, 2573–2583. https://doi.org/10.1534/g3.118.200443.
Kalt, W., Cassidy, A., Howard, L. R., Krikorian, R., Stull, A. J., Tremblay, F., & Zamora‐Ros, R. (2020). Recent research on the health benefits of blueberries and their anthocyanins. Advances in Nutrition, 11, 224–236. https://doi.org/10.1093/advances/nmz065.
Kriaridou, C., Tsairidou, S., Houston, R. D., & Robledo, D. (2020). Genomic prediction using low density marker panels in aquaculture: Performance across species, traits, and genotyping platforms. Frontiers in Genetics, 11, 124. https://doi.org/10.3389/fgene.2020.00124.
Laloë, D. (1993). Precision and information in linear models of genetic evaluation. Genetics Selection Evolution, 25, Article 557. https://doi.org/10.1186/1297‐9686‐25‐6‐557.
Lorenz, A., & Nice, L. (2017). Training population design and resource allocation for genomic selection in plant breeding. In R. K. Varshney, M. Roorkiwal, & M. E. Sorrells (Eds.), Genomic selection for crop improvement (pp. 7–22). Springer International Publishing.
Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome‐wide dense marker maps. Genetics, 157, 1819–1829. https://doi.org/10.1093/genetics/157.4.1819.
Mulamba, N. N., & Mock, J. J. (1978). Improvement of yield potential of the ETO blanco maize (Zea mays L.) population by breeding for plant traits. Egyptian Journal of Genetics and Cytology, 7(1), 40–51.
Norman, A., Taylor, J., Edwards, J., & Kuchel, H. (2018). Optimising genomic selection in wheat: Effect of marker density, population size and population structure on prediction accuracy. G3 Genes|Genomes|Genetics, 8, 2889–2899. https://doi.org/10.1534/g3.118.200311.
Rincent, R., Laloë, D., Nicolas, S., Altmann, T., Brunel, D., Revilla, P., Rodríguez, V. M., Moreno‐Gonzalez, J., Melchinger, A., Bauer, E., Schoen, C.‐C., Meyer, N., Giauffret, C., Bauland, C., Jamin, P., Laborde, J., Monod, H., Flament, P., Charcosset, A., & Moreau, L. (2012). Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: Comparison of methods in two diverse groups of maize inbreds (Zea mays L.). Genetics, 192, 715–728. https://doi.org/10.1534/genetics.112.141473.
Rutkoski, J., Singh, R. P., Huerta‐Espino, J., Bhavani, S., Poland, J., Jannink, J. L., & Sorrells, M. E. (2015). Efficient use of historical data for genomic selection: A case study of stem rust resistance in wheat. The Plant Genome, 8, plantgenome2014.09.0046. https://doi.org/10.3835/plantgenome2014.09.0046.
Sarinelli, J. M., Murphy, J. P., Tyagi, P., Holland, J. B., Johnson, J. W., Mergoum, M., Mason, R. E., Babar, A., Harrison, S., Sutton, R., Griffey, C. A., & Brown‐Guedira, G. (2019). Training population selection and use of fixed effects to optimize genomic predictions in a historical USA winter wheat panel. Theoretical and Applied Genetics, 132, 1247–1261. https://doi.org/10.1007/s00122‐019‐03276‐6.
Spindel, J., Begum, H., Akdemir, D., Virk, P., Collard, B., Redoña, E., Atlin, G., Jannink, J.‐L., & McCouch, S. R. (2015). Genomic selection and association mapping in rice (Oryza sativa): Effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLOS Genetics, 11, e1004982. https://doi.org/10.1371/journal.pgen.1004982.
Subedi, S., Feng, Z., Deardon, R., & Schenkel, F. S. (2013). SNP selection for predicting a quantitative trait. Journal of Applied Statistics, 40, 600–613. https://doi.org/10.1080/02664763.2012.750282.
Sun, C., & VanRaden, P. M. (2014). Increasing long‐term response by selecting for favorable minor alleles. PLoS One, 9, e88510. https://doi.org/10.1371/journal.pone.0088510.
Wang, C., Habier, D., Peiris, B. L., Wolc, A., Kranis, A., Watson, K. A., Avendano, S., Garrick, D. J., Fernando, R. L., Lamont, S. J., & Dekkers, J. C. M. (2013). Accuracy of genomic prediction using an evenly spaced, low‐density single nucleotide polymorphism panel in broiler chickens. Poultry Science, 92, 1712–1723. https://doi.org/10.3382/ps.2012‐02941.
Wellmann, R., Preuß, S., Tholen, E., Heinkel, J., Wimmers, K., & Bennewitz, J. (2013). Genomic selection using low density marker panels with application to a sire line in pigs. Genetics Selection Evolution, 45, Article 28. https://doi.org/10.1186/1297‐9686‐45‐28.
Werner, C. R., Gaynor, R. C., Gorjanc, G., Hickey, J. M., Kox, T., Abbadi, A., Leckband, G., Snowdon, R. J., & Stahl, A. (2020). How population structure impacts genomic selection accuracy in cross‐validation: Implications for practical breeding. Frontiers in Plant Science, 11, 592977. https://doi.org/10.3389/fpls.2020.592977.
Wolc, A., Zhao, H. H., Arango, J., Settar, P., Fulton, J. E., O'Sullivan, N. P., Preisinger, R., Stricker, C., Habier, D., Fernando, R. L., Garrick, D. J., Lamont, S. J., & Dekkers, J. C. M. (2015). Response and inbreeding from a genomic selection experiment in layer chickens. Genetics Selection Evolution, 47, Article 59. https://doi.org/10.1186/s12711‐015‐0133‐5.
Zhang, X., Pérez‐Rodríguez, P., Semagn, K., Beyene, Y., Babu, R., López‐Cruz, M. A., San Vicente, F., Olsen, M., Buckler, E., Jannink, J.‐L., Prasanna, B. M., & Crossa, J. (2015). Genomic prediction in biparental tropical maize populations in water‐stressed and well‐watered environments using low‐density and GBS SNPs. Heredity, 114, 291–299. https://doi.org/10.1038/hdy.2014.99.
Zingaretti, L. M., Gezan, S. A., Ferrão, L. F. V., Osorio, L. F., Monfort, A., Muñoz, P. R., Whitaker, V. M., & Pérez‐Enciso, M. (2020). Exploring deep learning for complex trait genomic prediction in polyploid outcrossing species. Frontiers in Plant Science, 11, 25. https://doi.org/10.3389/fpls.2020.00025.
معلومات مُعتمدة: UF royalty fund; #2019-51181-30015 USDA-NIFA SCRI
تواريخ الأحداث: Date Created: 20240801 Latest Revision: 20240801
رمز التحديث: 20240801
DOI: 10.1002/tpg2.20488
PMID: 39087863
قاعدة البيانات: MEDLINE
الوصف
تدمد:1940-3372
DOI:10.1002/tpg2.20488