دورية أكاديمية

Internal strain-driven bond manipulation and band engineering in Bi 2- x Sb x YO 4 Cl photocatalysts with triple fluorite layers.

التفاصيل البيبلوغرافية
العنوان: Internal strain-driven bond manipulation and band engineering in Bi 2- x Sb x YO 4 Cl photocatalysts with triple fluorite layers.
المؤلفون: Gabov A; Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan daichik@scl.kyoto-u.ac.jp kage@scl.kyoto-u.ac.jp.; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) 31 Kashirskoye Shosse Moscow 115409 Russia., Kato D; Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan daichik@scl.kyoto-u.ac.jp kage@scl.kyoto-u.ac.jp., Ubukata H; Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan daichik@scl.kyoto-u.ac.jp kage@scl.kyoto-u.ac.jp., Aso R; Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University Fukuoka 819-0395 Japan., Kakudou N; Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan daichik@scl.kyoto-u.ac.jp kage@scl.kyoto-u.ac.jp., Fujita K; Department of Material Chemistry, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan., Suzuki H; Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan daichik@scl.kyoto-u.ac.jp kage@scl.kyoto-u.ac.jp., Tomita O; Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan daichik@scl.kyoto-u.ac.jp kage@scl.kyoto-u.ac.jp., Saeki A; Department of Applied Chemistry, Graduate School of Engineering, Osaka University Osaka 565-0871 Japan., Abe R; Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan daichik@scl.kyoto-u.ac.jp kage@scl.kyoto-u.ac.jp., Karazhanov SZ; Department for Solar Energy Materials and Technologies, Institute for Energy Technology Kjeller NO 2027 Norway smagul.karazhanov@ife.no., Kageyama H; Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan daichik@scl.kyoto-u.ac.jp kage@scl.kyoto-u.ac.jp.
المصدر: Chemical science [Chem Sci] 2024 Jun 19; Vol. 15 (30), pp. 11856-11864. Date of Electronic Publication: 2024 Jun 19 (Print Publication: 2024).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Royal Society of Chemistry Country of Publication: England NLM ID: 101545951 Publication Model: eCollection Cited Medium: Print ISSN: 2041-6520 (Print) Linking ISSN: 20416520 NLM ISO Abbreviation: Chem Sci Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Cambridge, UK : Royal Society of Chemistry, [2010]-
مستخلص: In extended solid-state materials, the manipulation of chemical bonds through redox reactions often leads to the emergence of interesting properties, such as unconventional superconductivity, which can be achieved by adjusting the Fermi level through, e.g. , intercalation and pressure. Here, we demonstrate that the internal 'biaxial strain' in tri-layered fluorite oxychloride photocatalysts can regulate bond formation and cleavage without redox processes. We achieve this by synthesizing the isovalent solid solution Bi 2- x Sb x YO 4 Cl, which undergoes a structural phase transition from the ideal Bi 2 YO 4 Cl structure to the Sb 2 YO 4 Cl structure with (Bi,Sb) 4 O 8 rings. Initially, substitution of smaller Sb induces expected lattice contraction, but further substitution beyond x > 0.6 triggers an unusual lattice expansion before the phase transition at x = 1.5. Detailed analysis reveals structural instability at high x values, characterized by Sb-O underbonding, which is attributed to tensile strain exerted from the inner Y sublayer to the outer (Bi,Sb)O sublayer within the triple fluorite block - a concept well-recognized in thin film studies. This concept also explains the formation of zigzag Bi-O chains in Bi 2 MO 4 Cl (M = Bi, La). The Sb substitution in Bi 2- x Sb x YO 4 Cl elevates the valence band maximum, resulting in a minimized bandgap of 2.1 eV around x = 0.6, which is significantly smaller than those typically observed in oxychlorides, allowing the absorption of a wider range of light wavelengths. Given the predominance of materials with a double fluorite layer in previous studies, our findings highlight the potential of compounds endowed with triple or thicker fluorite layers as a novel platform for band engineering that utilizes biaxial strain from the inner layer(s) to finely control their electronic structures.
Competing Interests: The authors declare no competing financial interest.
(This journal is © The Royal Society of Chemistry.)
References: J Am Chem Soc. 2018 May 30;140(21):6648-6655. (PMID: 29733632)
J Am Chem Soc. 2021 Feb 17;143(6):2491-2499. (PMID: 33417448)
Nature. 2010 Aug 19;466(7309):954-8. (PMID: 20725036)
Inorg Chem. 2021 Oct 18;60(20):15667-15674. (PMID: 34596398)
J Phys Chem Lett. 2018 Dec 6;9(23):6814-6817. (PMID: 30990726)
J Am Chem Soc. 2017 Dec 27;139(51):18725-18731. (PMID: 29210576)
Sci Technol Adv Mater. 2015 May 26;16(3):033506. (PMID: 27877787)
J Am Chem Soc. 2024 Mar 6;146(9):5806-5810. (PMID: 38394698)
J Am Chem Soc. 2022 Jun 15;144(23):10119-10132. (PMID: 35653701)
Chemistry. 2022 Dec 6;28(68):e202202004. (PMID: 36070005)
J Am Chem Soc. 2023 Oct 11;145(40):21807-21816. (PMID: 37770040)
Science. 2004 Nov 5;306(5698):1005-9. (PMID: 15528439)
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868. (PMID: 10062328)
ACS Appl Mater Interfaces. 2019 Feb 13;11(6):5642-5650. (PMID: 30146884)
Nat Commun. 2020 Nov 23;11(1):5923. (PMID: 33230157)
Inorg Chem. 2021 Feb 15;60(4):2228-2233. (PMID: 33502187)
J Am Chem Soc. 2016 Sep 14;138(36):11820-32. (PMID: 27583813)
J Am Chem Soc. 2024 Feb 14;146(6):3844-3853. (PMID: 38193701)
Phys Rev Lett. 2008 Apr 4;100(13):136406. (PMID: 18517979)
Polym J. 2020;52(12):1307-1321. (PMID: 32873989)
Chem Mater. 2023 Jul 12;35(14):5532-5540. (PMID: 37521745)
J Am Chem Soc. 2020 Apr 8;142(14):6737-6749. (PMID: 32223192)
J Am Chem Soc. 2022 Oct 5;144(39):18030-18042. (PMID: 36134903)
J Am Chem Soc. 2016 Feb 24;138(7):2082-5. (PMID: 26878489)
J Chem Inf Model. 2022 Jun 27;62(12):2909-2915. (PMID: 35678099)
Sci Rep. 2016 Jun 16;6:27765. (PMID: 27306196)
Chem Soc Rev. 2011 Sep;40(9):4455-63. (PMID: 21666920)
RSC Adv. 2021 Dec 22;12(2):640-647. (PMID: 35425089)
Sci Rep. 2016 Sep 07;6:32664. (PMID: 27600662)
Appl Opt. 1976 Apr 1;15(4):951-4. (PMID: 20165101)
ChemSusChem. 2019 May 8;12(9):1872-1888. (PMID: 30211984)
Inorg Chem. 2019 Feb 18;58(4):2755-2760. (PMID: 30724063)
J Phys Condens Matter. 2007 Aug 22;19(33):335219. (PMID: 21694142)
تواريخ الأحداث: Date Created: 20240802 Latest Revision: 20240803
رمز التحديث: 20240803
مُعرف محوري في PubMed: PMC11290426
DOI: 10.1039/d4sc02092h
PMID: 39092095
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-6520
DOI:10.1039/d4sc02092h