دورية أكاديمية

Novel splice site and nonsense variants in PKHD1 cause autosomal recessive polycystic kidney disease in a Chinese Zhuang ethnic family.

التفاصيل البيبلوغرافية
العنوان: Novel splice site and nonsense variants in PKHD1 cause autosomal recessive polycystic kidney disease in a Chinese Zhuang ethnic family.
المؤلفون: Qian C; Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China., Yan J, Huang X, Wang Z, Lin F
المصدر: Medicine [Medicine (Baltimore)] 2024 Aug 02; Vol. 103 (31), pp. e39216.
نوع المنشور: Journal Article; Case Reports
اللغة: English
بيانات الدورية: Publisher: Lippincott Williams & Wilkins Country of Publication: United States NLM ID: 2985248R Publication Model: Print Cited Medium: Internet ISSN: 1536-5964 (Electronic) Linking ISSN: 00257974 NLM ISO Abbreviation: Medicine (Baltimore) Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hagerstown, Md : Lippincott Williams & Wilkins
مواضيع طبية MeSH: Polycystic Kidney, Autosomal Recessive*/genetics , Receptors, Cell Surface*/genetics , Codon, Nonsense* , Pedigree*, Humans ; Female ; China ; Male ; Exome Sequencing ; Asian People/genetics ; RNA Splice Sites/genetics ; Mutation, Missense ; Adult ; East Asian People
مستخلص: Background: This study aims to report the clinical characteristics of a child with autosomal recessive polycystic kidney disease (ARPKD) within a Chinese Zhuang ethnic family.
Methods: We used whole exome sequencing (WES) in the family to examine the genetic cause of the disease. Candidate pathogenic variants were validated by Sanger sequencing.
Results: We identified previously unreported mutations in the PKHD1 gene of the proband with ARPKD through WES: a splice site mutation c.6809-2A > T, a nonsense mutation c.4192C > T(p.Gln1398Ter), and a missense mutation c.2181T > G(p.Asn727Lys). Her mother is a heterozygous carrier of c.2181T > G(p.Asn727Lys) mutation. Her father is a carrier of c.6809-2A > T mutation and c.4192C > T(p.Gln1398Ter) mutation.
Conclusions: The identification of novel mutations in the PKHD1 gene through WES not only expands the spectrum of known variants but also potentially enhances genetic counseling and prenatal diagnostic approaches for families affected by ARPKD.
Competing Interests: The authors have no conflicts of interest to disclose.
(Copyright © 2024 the Author(s). Published by Wolters Kluwer Health, Inc.)
References: Bergmann C, Guay-Woodford LM, Harris PC, Horie S, Peters DJM, Torres VE. Polycystic kidney disease. Nat Rev Dis Primers. 2018;4:50.
Bergmann C. Genetics of autosomal recessive polycystic kidney disease and its differential diagnoses. Front Pediatr. 2017;5:221.
Blyth H, Ockenden BG. Polycystic disease of kidney and liver presenting in childhood. J Med Genet. 1971;8:257–84.
Kline TL, Korfiatis P, Edwards ME, et al. Image texture features predict renal function decline in patients with autosomal dominant polycystic kidney disease. Kidney Int. 2017;92:1206–16.
Onuchic LF, Furu L, Nagasawa Y, et al. PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am J Hum Genet. 2002;70:1305–17.
Goggolidou P, Richards T. The genetics of Autosomal Recessive Polycystic Kidney Disease (ARPKD). Biochim Biophys Acta Mol Basis Dis. 2022;1868:166348.
Lu H. Mutations in DZIP1L, which encodes a ciliary transition zone protein, cause autosomal recessive polycystic kidney disease. Mech Dev. 2017;145:S33–S33.
Cordido A, Vizoso-Gonzalez M, Garcia-Gonzalez MA. Molecular pathophysiology of autosomal recessive polycystic kidney disease. Int J Mol Sci. 2021;22:6523.
Bergmann C. Early and severe polycystic kidney disease and related ciliopathies: an emerging field of interest. Nephron. 2019;141:50–60.
Swanson K. Autosomal recessive polycystic kidney disease. Am J Obstet Gynecol. 2021;225:B7–8.
Buscher R, Buscher AK, Weber S, et al. Clinical manifestations of Autosomal Recessive Polycystic Kidney Disease (ARPKD): kidney-related and non-kidney-related phenotypes. Pediatr Nephrol. 2014;29:1915–25.
Ajiri R, Burgmaier K, Akinci N, et al. Phenotypic variability in siblings with autosomal recessive polycystic kidney disease. Kidney Int Rep. 2022;7:1643–52.
Turkbey B, Ocak I, Daryanani K, et al. Autosomal recessive polycystic kidney disease and congenital hepatic fibrosis (ARPKD/CHF). Pediatr Radiol. 2009;39:100–11.
Bergmann C, Senderek J, Windelen E, et al. Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease (ARPKD). Kidney Int. 2005;67:829–48.
Richter F, Rutherford KD, Cooke AJ, et al. A deep intronic PKHD1 variant identified by SpliceAI in a deceased neonate with autosomal recessive polycystic kidney disease. Am J Kidney Dis. 2024;83:829–33.
Bannell TAK, Cockburn JJB. The molecular structure and function of fibrocystin, the key gene product implicated in Autosomal Recessive Polycystic Kidney Disease (ARPKD). Ann Hum Genet. 2024;88:58–75.
Bergmann C, Senderek J, Schneider F, et al. PKHD1 mutations in families requesting prenatal diagnosis for Autosomal Recessive Polycystic Kidney Disease (ARPKD). Hum Mutat. 2004;23:487–95.
Zhang R, Chen S, Han P, et al. Whole exome sequencing identified a homozygous novel variant in CEP290 gene causes Meckel syndrome. J Cell Mol Med. 2020;24:1906–16.
Dai Y, Liang S, Dong X, et al. Whole exome sequencing identified a novel DAG1 mutation in a patient with rare, mild and late age of onset muscular dystrophy-dystroglycanopathy. J Cell Mol Med. 2019;23:811–8.
Burgmaier K, Brinker L, Erger F, et al. Refining genotype-phenotype correlations in 304 patients with autosomal recessive polycystic kidney disease and PKHD1 gene variants. Kidney Int. 2021;100:650–9.
Ebner K, Dafinger C, Ortiz-Bruechle N, et al. Challenges in establishing genotype-phenotype correlations in ARPKD: case report on a toddler with two severe PKHD1 mutations. Pediatr Nephrol. 2017;32:1269–73.
Boddu R, Yang CZ, O’Connor AK, et al. Intragenic motifs regulate the transcriptional complexity of Pkhd1/PKHD1. J Mol Med (Berl). 2014;92:1045–56.
Han P, Wei G, Cai K, et al. Identification and functional characterization of mutations in LPL gene causing severe hypertriglyceridaemia and acute pancreatitis. J Cell Mol Med. 2020;24:1286–99.
Bergmann C, Frank V, Kupper F, Schmidt C, Senderek J, Zerres K. Functional analysis of PKHD1 splicing in autosomal recessive polycystic kidney disease. J Hum Genet. 2006;51:788–93.
Li H, Wang C, Che R, et al. A potential therapy using antisense oligonucleotides to treat autosomal recessive polycystic kidney disease. J Clin Med. 2023;12:1428.
Sun LL, Mailliot J, Schaffitzel C. Nonsense-mediated mRNA decay factor functions in human health and disease. Biomedicines. 2023;11:722.
Hao X, Liu S, Dong Q, Zhang H, Zhao J, Su L. Whole exome sequencing identifies recessive PKHD1 mutations in a Chinese twin family with caroli disease. PLoS One. 2014;9:e92661.
Ishiko S, Morisada N, Kondo A, et al. Clinical features of autosomal recessive polycystic kidney disease in the Japanese population and analysis of splicing in PKHD1 gene for determination of phenotypes. Clin Exp Nephrol. 2022;26:140–53.
Zheng Y, Xu J, Liang S, Lin D, Banerjee S. Whole exome sequencing identified a novel heterozygous mutation in HMBS gene in a Chinese patient with acute intermittent porphyria with rare type of mild anemia. Front Genet. 2018;9:129.
المشرفين على المادة: 0 (PKHD1 protein, human)
0 (Receptors, Cell Surface)
0 (Codon, Nonsense)
0 (RNA Splice Sites)
تواريخ الأحداث: Date Created: 20240802 Date Completed: 20240802 Latest Revision: 20240805
رمز التحديث: 20240805
مُعرف محوري في PubMed: PMC11296461
DOI: 10.1097/MD.0000000000039216
PMID: 39093746
قاعدة البيانات: MEDLINE
الوصف
تدمد:1536-5964
DOI:10.1097/MD.0000000000039216