دورية أكاديمية

A GnRH neuronal population in the olfactory bulb translates socially relevant odors into reproductive behavior in male mice.

التفاصيل البيبلوغرافية
العنوان: A GnRH neuronal population in the olfactory bulb translates socially relevant odors into reproductive behavior in male mice.
المؤلفون: Decoster L; Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France.; Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France., Trova S; Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France.; Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France.; Centro CMP3VdA, Istituto Italiano di Tecnologia (IIT), Aosta, Italy., Zucca S; Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.; Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy., Bulk J; Max Planck Institute for Metabolism Research, Max Planck Research Group Neurocircuit Wiring and Function, Cologne, Germany., Gouveia A; Max Planck Institute for Metabolism Research, Max Planck Research Group Neurocircuit Wiring and Function, Cologne, Germany., Ternier G; Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France.; Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France., Lhomme T; Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France.; Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France., Legrand A; Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France.; Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France., Gallet S; Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France.; Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France., Boehm U; Experimental Pharmacology, Center for Molecular Signaling (PZMS), Center for Gender-specific Biology and Medicine (CGBM), Saarland University School of Medicine, Homburg, Germany., Wyatt A; Experimental Pharmacology, Center for Molecular Signaling (PZMS), Center for Gender-specific Biology and Medicine (CGBM), Saarland University School of Medicine, Homburg, Germany., Wahl V; Experimental Pharmacology, Center for Molecular Signaling (PZMS), Center for Gender-specific Biology and Medicine (CGBM), Saarland University School of Medicine, Homburg, Germany., Wartenberg P; Experimental Pharmacology, Center for Molecular Signaling (PZMS), Center for Gender-specific Biology and Medicine (CGBM), Saarland University School of Medicine, Homburg, Germany., Hrabovszky E; Laboratory of Reproductive Neurobiology, Hun-Ren Institute of Experimental Medicine, Budapest, Hungary., Rácz G; Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary., Luzzati F; Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.; Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy., Nato G; Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.; Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy., Fogli M; Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.; Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy., Peretto P; Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.; Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy., Schriever SC; German Center for Diabetes Research (DZD), Neuherberg, Germany.; Research Unit Neurobiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany., Bernecker M; German Center for Diabetes Research (DZD), Neuherberg, Germany.; Research Unit Neurobiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany.; Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany., Pfluger PT; German Center for Diabetes Research (DZD), Neuherberg, Germany.; Research Unit Neurobiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany.; Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany., Steculorum SM; Max Planck Institute for Metabolism Research, Max Planck Research Group Neurocircuit Wiring and Function, Cologne, Germany.; German Center for Diabetes Research (DZD), Neuherberg, Germany.; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany., Bovetti S; Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.; Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy., Rasika S; Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France.; Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France., Prevot V; Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France.; Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France., Silva MSB; Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France.; Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France.; Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA., Giacobini P; Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France. paolo.giacobini@inserm.fr.; Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France. paolo.giacobini@inserm.fr.
المصدر: Nature neuroscience [Nat Neurosci] 2024 Sep; Vol. 27 (9), pp. 1758-1773. Date of Electronic Publication: 2024 Aug 02.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: United States NLM ID: 9809671 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1546-1726 (Electronic) Linking ISSN: 10976256 NLM ISO Abbreviation: Nat Neurosci Subsets: MEDLINE
أسماء مطبوعة: Publication: <2002->: New York, NY : Nature Publishing Group
Original Publication: New York, NY : Nature America Inc., c1998-
مواضيع طبية MeSH: Gonadotropin-Releasing Hormone*/metabolism , Olfactory Bulb*/physiology , Olfactory Bulb*/metabolism , Odorants* , Neurons*/metabolism , Neurons*/physiology , Sexual Behavior, Animal*/physiology , Vomeronasal Organ*/physiology , Vomeronasal Organ*/metabolism, Animals ; Male ; Mice ; Female ; Mice, Inbred C57BL ; Smell/physiology ; Amygdala/metabolism ; Amygdala/physiology
مستخلص: Hypothalamic gonadotropin-releasing hormone (GnRH) neurons regulate fertility and integrate hormonal status with environmental cues to ensure reproductive success. Here we show that GnRH neurons in the olfactory bulb (GnRH OB ) of adult mice can mediate social recognition. Specifically, we show that GnRH OB neurons extend neurites into the vomeronasal organ and olfactory epithelium and project to the median eminence. GnRH OB neurons in males express vomeronasal and olfactory receptors, are activated by female odors and mediate gonadotropin release in response to female urine. Male preference for female odors required the presence and activation of GnRH OB neurons, was impaired after genetic inhibition or ablation of these cells and relied on GnRH signaling in the posterodorsal medial amygdala. GnRH receptor expression in amygdala kisspeptin neurons appear to be required for GnRH OB neurons' actions on male mounting behavior. Taken together, these results establish GnRH OB neurons as regulating fertility, sex recognition and mating in male mice.
(© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.)
References: Dulac, C. & Torello, A. T. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat. Rev. Neurosci. 4, 551–562 (2003). (PMID: 1283833010.1038/nrn1140)
Belluscio, L., Koentges, G., Axel, R. & Dulac, C. A map of pheromone receptor activation in the mammalian brain. Cell 97, 209–220 (1999). (PMID: 1021924210.1016/S0092-8674(00)80731-X)
Rodriguez, I., Feinstein, P. & Mombaerts, P. Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97, 199–208 (1999). (PMID: 1021924110.1016/S0092-8674(00)80730-8)
Lehman, M. N., Winans, S. S. & Powers, J. B. Medial nucleus of the amygdala mediates chemosensory control of male hamster sexual behavior. Science 210, 557–560 (1980). (PMID: 742320910.1126/science.7423209)
Baird, A. D., Wilson, S. J., Bladin, P. F., Saling, M. M. & Reutens, D. C. The amygdala and sexual drive: insights from temporal lobe epilepsy surgery. Ann. Neurol. 55, 87–96 (2004). (PMID: 1470511610.1002/ana.10997)
Bayless, D. W. et al. A neural circuit for male sexual behavior and reward. Cell 186, 3862–3881 (2023). (PMID: 375726601061517910.1016/j.cell.2023.07.021)
Keller, M., Pillon, D. & Bakker, J. Olfactory systems in mate recognition and sexual behavior. Vitam. Horm. 83, 331–350 (2010). (PMID: 2083195310.1016/S0083-6729(10)83014-6)
Keverne, E. B. Importance of olfactory and vomeronasal systems for male sexual function. Physiol. Behav. 83, 177–187 (2004). (PMID: 1548853810.1016/j.physbeh.2004.08.013)
Aoki, M. et al. Prolactin-sensitive olfactory sensory neurons regulate male preference in female mice by modulating responses to chemosensory cues. Sci. Adv. 7, eabg4074 (2021). (PMID: 34623921850051410.1126/sciadv.abg4074)
Mandiyan, V. S., Coats, J. K. & Shah, N. M. Deficits in sexual and aggressive behaviors in Cnga2 mutant mice. Nat. Neurosci. 8, 1660–1662 (2005). (PMID: 1626113310.1038/nn1589)
Wang, Z. et al. Pheromone detection in male mice depends on signaling through the type 3 adenylyl cyclase in the main olfactory epithelium. J. Neurosci. 26, 7375–7379 (2006). (PMID: 16837584667418510.1523/JNEUROSCI.1967-06.2006)
Duittoz, A. H. et al. Development of the gonadotropin-releasing hormone system. J. Neuroendocrinol. 34, e13087 (2022). (PMID: 35067985928680310.1111/jne.13087)
Herbison, A. E. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat. Rev. Endocrinol. 12, 452–466 (2016). (PMID: 2719929010.1038/nrendo.2016.70)
Bronson, F. H. The regulation of luteinizing hormone secretion by estrogen: relationships among negative feedback, surge potential, and male stimulation in juvenile, peripubertal, and adult female mice. Endocrinology 108, 506–516 (1981). (PMID: 744974010.1210/endo-108-2-506)
Dluzen, D. E., Ramirez, V. D., Carter, C. S. & Getz, L. L. Male vole urine changes luteinizing hormone-releasing hormone and norepinephrine in female olfactory bulb. Science 212, 573–575 (1981). (PMID: 701060810.1126/science.7010608)
Boehm, U., Zou, Z. & Buck, L. B. Feedback loops link odor and pheromone signaling with reproduction. Cell 123, 683–695 (2005). (PMID: 1629003610.1016/j.cell.2005.09.027)
Yoon, H., Enquist, L. W. & Dulac, C. Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 123, 669–682 (2005). (PMID: 1629003710.1016/j.cell.2005.08.039)
Casoni, F. et al. Development of the neurons controlling fertility in humans: new insights from 3D imaging and transparent fetal brains. Development 143, 3969–3981 (2016). (PMID: 2780305810.1242/dev.139444)
Boehm, U. et al. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism–pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol. 11, 547–564 (2015). (PMID: 2619470410.1038/nrendo.2015.112)
Messina, A. et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. Nat. Neurosci. 19, 835–844 (2016). (PMID: 2713521510.1038/nn.4298)
Belle, M. et al. Tridimensional visualization and analysis of early human development. Cell 169, 161–173 (2017). (PMID: 2834034110.1016/j.cell.2017.03.008)
Renier, N. et al. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910 (2014). (PMID: 2541716410.1016/j.cell.2014.10.010)
Spergel, D. J., Kruth, U., Hanley, D. F., Sprengel, R. & Seeburg, P. H. GABA- and glutamate-activated channels in green fluorescent protein-tagged gonadotropin-releasing hormone neurons in transgenic mice. J. Neurosci. 19, 2037–2050 (1999). (PMID: 10066257678254110.1523/JNEUROSCI.19-06-02037.1999)
Wang, J. & Hamill, O. P. Piezo2-peripheral baroreceptor channel expressed in select neurons of the mouse brain: a putative mechanism for synchronizing neural networks by transducing intracranial pressure pulses. J. Integr. Neurosci. 20, 825–837 (2021). (PMID: 3499770710.31083/j.jin2004085)
Zeppilli, S. et al. Molecular characterization of projection neuron subtypes in the mouse olfactory bulb. eLife 10, e65445 (2021). (PMID: 34292150835259410.7554/eLife.65445)
Jammal Salameh, L., Bitzenhofer, S. H., Hanganu-Opatz, I. L., Dutschmann, M. & Egger, V. Blood pressure pulsations modulate central neuronal activity via mechanosensitive ion channels. Science 383, eadk8511 (2024). (PMID: 3830100110.1126/science.adk8511)
Galliano, E. et al. Embryonic and postnatal neurogenesis produce functionally distinct subclasses of dopaminergic neuron. eLife 7, e32373 (2018). (PMID: 29676260593548710.7554/eLife.32373)
Castle, M. J., Gershenson, Z. T., Giles, A. R., Holzbaur, E. L. & Wolfe, J. H. Adeno-associated virus serotypes 1, 8, and 9 share conserved mechanisms for anterograde and retrograde axonal transport. Hum. Gene Ther. 25, 705–720 (2014). (PMID: 24694006413735310.1089/hum.2013.189)
Vardy, E. et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 86, 936–946 (2015). (PMID: 25937170444159210.1016/j.neuron.2015.03.065)
Johnston, R. E. & Bronson, F. Endocrine control of female mouse odors that elicit luteinizing hormone surges and attraction in males. Biol. Reprod. 27, 1174–1180 (1982). (PMID: 715966110.1095/biolreprod27.5.1174)
Maruniak, J. A. & Bronson, F. H. Gonadotropic responses of male mice to female urine. Endocrinology 99, 963–969 (1976). (PMID: 98790310.1210/endo-99-4-963)
Chu, Z. & Moenter, S. M. Endogenous activation of metabotropic glutamate receptors modulates GABAergic transmission to gonadotropin-releasing hormone neurons and alters their firing rate: a possible local feedback circuit. J. Neurosci. 25, 5740–5749 (2005). (PMID: 15958740120144810.1523/JNEUROSCI.0913-05.2005)
Yang, C. F. et al. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 153, 896–909 (2013). (PMID: 23663785376776810.1016/j.cell.2013.04.017)
Wen, S. et al. Genetic identification of GnRH receptor neurons: a new model for studying neural circuits underlying reproductive physiology in the mouse brain. Endocrinology 152, 1515–1526 (2011). (PMID: 2130394410.1210/en.2010-1208)
Wen, S. et al. Functional characterization of genetically labeled gonadotropes. Endocrinology 149, 2701–2711 (2008). (PMID: 1832599510.1210/en.2007-1502)
Kang, N., Baum, M. J. & Cherry, J. A. A direct main olfactory bulb projection to the ‘vomeronasal’ amygdala in female mice selectively responds to volatile pheromones from males. Eur. J. Neurosci. 29, 624–634 (2009). (PMID: 19187265266993610.1111/j.1460-9568.2009.06638.x)
Kevetter, G. A. & Winans, S. S. Connections of the corticomedial amygdala in the golden hamster. II. Efferents of the “olfactory amygdala”. J. Comp. Neurol. 197, 99–111 (1981). (PMID: 616470310.1002/cne.901970108)
Pineda, R., Plaisier, F., Millar, R. P. & Ludwig, M. Amygdala kisspeptin neurons: putative mediators of olfactory control of the gonadotropic axis. Neuroendocrinology 104, 223–238 (2017). (PMID: 2705495810.1159/000445895)
Seminara, S. B. et al. The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 349, 1614–1627 (2003). (PMID: 1457373310.1056/NEJMoa035322)
Topaloglu, A. K. et al. Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N. Engl. J. Med. 366, 629–635 (2012). (PMID: 2233574010.1056/NEJMoa1111184)
de Roux, N. et al. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl Acad. Sci. USA 100, 10972–10976 (2003). (PMID: 1294456519691110.1073/pnas.1834399100)
Stephens, S. B. Z. & Kauffman, A. S. Regulation and possible functions of kisspeptin in the medial amygdala. Front. Endocrinol. 8, 191 (2017). (PMID: 10.3389/fendo.2017.00191)
Lin, D. Y., Zhang, S. Z., Block, E. & Katz, L. C. Encoding social signals in the mouse main olfactory bulb. Nature 434, 470–477 (2005). (PMID: 1572414810.1038/nature03414)
Shani-Narkiss, H. et al. Young adult-born neurons improve odor coding by mitral cells. Nat. Commun. 11, 5867 (2020). (PMID: 33203831767312210.1038/s41467-020-19472-8)
Hellier, V. et al. Female sexual behavior in mice is controlled by kisspeptin neurons. Nat. Commun. 9, 400 (2018). (PMID: 29374161578605510.1038/s41467-017-02797-2)
Manfredi-Lozano, M. et al. GnRH replacement rescues cognition in Down syndrome. Science 377, eabq4515 (2022). (PMID: 36048943761382710.1126/science.abq4515)
Schang, A. L. et al. GnRH receptor gene expression in the developing rat hippocampus: transcriptional regulation and potential roles in neuronal plasticity. Endocrinology 152, 568–580 (2011). (PMID: 2112343610.1210/en.2010-0840)
Skrapits, K. et al. The cryptic gonadotropin-releasing hormone neuronal system of human basal ganglia. eLife 10, e67714 (2021). (PMID: 34128468824512510.7554/eLife.67714)
Hurst, J. L. Female recognition and assessment of males through scent. Behav. Brain Res 200, 295–303 (2009). (PMID: 1914688410.1016/j.bbr.2008.12.020)
Choi, J. M. et al. Development of the main olfactory system and main olfactory epithelium-dependent male mating behavior are altered in Go-deficient mice. Proc. Natl Acad. Sci. USA 113, 10974–10979 (2016). (PMID: 27625425504717710.1073/pnas.1613026113)
Adekunbi, D. A. et al. Kisspeptin neurones in the posterodorsal medial amygdala modulate sexual partner preference and anxiety in male mice. J. Neuroendocrinol. 30, e12572 (2018). (PMID: 29356147587328010.1111/jne.12572)
Lehman, M. N. & Winans, S. S. Vomeronasal and olfactory pathways to the amygdala controlling male hamster sexual behavior: autoradiographic and behavioral analyses. Brain Res. 240, 27–41 (1982). (PMID: 709371810.1016/0006-8993(82)90641-2)
Wood, R. I. & Newman, S. W. Integration of chemosensory and hormonal cues is essential for mating in the male Syrian hamster. J. Neurosci. 15, 7261–7269 (1995). (PMID: 7472480657809810.1523/JNEUROSCI.15-11-07261.1995)
Gomez, D. M. & Newman, S. W. Differential projections of the anterior and posterior regions of the medial amygdaloid nucleus in the Syrian hamster. J. Comp. Neurol. 317, 195–218 (1992). (PMID: 157306410.1002/cne.903170208)
Kevetter, G. A. & Winans, S. S. Connections of the corticomedial amygdala in the golden hamster. I. Efferents of the “vomeronasal amygdala”. J. Comp. Neurol. 197, 81–98 (1981). (PMID: 616470210.1002/cne.901970107)
Meredith, M. Human vomeronasal organ function: a critical review of best and worst cases. Chem. Senses 26, 433–445 (2001). (PMID: 1136967810.1093/chemse/26.4.433)
Frasnelli, J., Lundstrom, J. N., Boyle, J. A., Katsarkas, A. & Jones-Gotman, M. The vomeronasal organ is not involved in the perception of endogenous odors. Hum. Brain Mapp. 32, 450–460 (2011). (PMID: 2057817010.1002/hbm.21035)
Zhang, G. et al. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497, 211–216 (2013). (PMID: 23636330375693810.1038/nature12143)
Mayer, C. et al. Timing and completion of puberty in female mice depend on estrogen receptor alpha-signaling in kisspeptin neurons. Proc. Natl Acad. Sci. USA 107, 22693–22698 (2010). (PMID: 21149719301249110.1073/pnas.1012406108)
Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017). (PMID: 28091601524181810.1038/ncomms14049)
Imamura, F., Ito, A. & LaFever, B. J. Subpopulations of projection neurons in the olfactory bulb. Front. Neural Circuits 14, 561822 (2020). (PMID: 32982699748513310.3389/fncir.2020.561822)
Tepe, B. et al. Single-cell RNA-seq of mouse olfactory bulb reveals cellular heterogeneity and activity-dependent molecular census of adult-born neurons. Cell Rep. 25, 2689–2703 (2018). (PMID: 30517858634220610.1016/j.celrep.2018.11.034)
Steyn, F. J. et al. Development of a methodology for and assessment of pulsatile luteinizing hormone secretion in juvenile and adult male mice. Endocrinology 154, 4939–4945 (2013). (PMID: 24092638539859910.1210/en.2013-1502)
Brock, O., Bakker, J. & Baum, M. J. Assessment of urinary pheromone discrimination, partner preference, and mating behaviors in female mice. Methods Mol. Biol. 1068, 319–329 (2013). (PMID: 2401437310.1007/978-1-62703-619-1_24)
Chachlaki, K. et al. NOS1 mutations cause hypogonadotropic hypogonadism with sensory and cognitive deficits that can be reversed in infantile mice. Sci. Transl. Med. 14, eabh2369 (2022). (PMID: 36197968761382610.1126/scitranslmed.abh2369)
Silva, M. S. B. et al. Female sexual behavior is disrupted in a preclinical mouse model of PCOS via an attenuated hypothalamic nitric oxide pathway. Proc. Natl Acad. Sci. USA 26, e2203503119 (2022). (PMID: 10.1073/pnas.2203503119)
معلومات مُعتمدة: 725149 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council); ANR-19-CE16-0021-02 Agence Nationale de la Recherche (French National Research Agency); ANR-18-CE14-00 Agence Nationale de la Recherche (French National Research Agency)
المشرفين على المادة: 33515-09-2 (Gonadotropin-Releasing Hormone)
تواريخ الأحداث: Date Created: 20240802 Date Completed: 20240904 Latest Revision: 20240912
رمز التحديث: 20240913
DOI: 10.1038/s41593-024-01724-1
PMID: 39095587
قاعدة البيانات: MEDLINE
الوصف
تدمد:1546-1726
DOI:10.1038/s41593-024-01724-1