دورية أكاديمية

You can't always get as much iron as you want: how rice plants deal with excess of an essential nutrient.

التفاصيل البيبلوغرافية
العنوان: You can't always get as much iron as you want: how rice plants deal with excess of an essential nutrient.
المؤلفون: Wairich A; Department of Agronomy and Crop Physiology, Justus Liebig University Giessen, Giessen, Germany., Aung MS; Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan., Ricachenevsky FK; Botany Department, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.; Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil., Masuda H; Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan.
المصدر: Frontiers in plant science [Front Plant Sci] 2024 Jul 19; Vol. 15, pp. 1381856. Date of Electronic Publication: 2024 Jul 19 (Print Publication: 2024).
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Frontiers Research Foundation Country of Publication: Switzerland NLM ID: 101568200 Publication Model: eCollection Cited Medium: Print ISSN: 1664-462X (Print) Linking ISSN: 1664462X NLM ISO Abbreviation: Front Plant Sci Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Lausanne : Frontiers Research Foundation, 2010-
مستخلص: Iron (Fe) is an essential nutrient for almost all organisms. However, free Fe within cells can lead to damage to macromolecules and oxidative stress, making Fe concentrations tightly controlled. In plants, Fe deficiency is a common problem, especially in well-aerated, calcareous soils. Rice ( Oryza sativa L.) is commonly cultivated in waterlogged soils, which are hypoxic and can cause Fe reduction from Fe 3+ to Fe 2+ , especially in low pH acidic soils, leading to high Fe availability and accumulation. Therefore, Fe excess decreases rice growth and productivity. Despite the widespread occurrence of Fe excess toxicity, we still know little about the genetic basis of how rice plants respond to Fe overload and what genes are involved in variation when comparing genotypes with different tolerance levels. Here, we review the current knowledge about physiological and molecular data on Fe excess in rice, providing a comprehensive summary of the field.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2024 Wairich, Aung, Ricachenevsky and Masuda.)
References: Nat Genet. 2014 Sep;46(9):982-8. (PMID: 25064006)
Plants (Basel). 2019 Jan 28;8(2):. (PMID: 30696039)
Plant Physiol Biochem. 2023 Sep;202:107921. (PMID: 37544121)
Nat Commun. 2021 Apr 19;12(1):2320. (PMID: 33875659)
Plant Cell Environ. 2012 Feb;35(2):234-44. (PMID: 21711357)
Curr Opin Plant Biol. 2003 Apr;6(2):139-46. (PMID: 12667870)
Plant J. 2005 Jul;43(2):262-72. (PMID: 15998312)
Front Plant Sci. 2018 Apr 03;9:412. (PMID: 29666628)
Front Plant Sci. 2017 Apr 28;8:671. (PMID: 28503184)
Proc Natl Acad Sci U S A. 1996 May 28;93(11):5624-8. (PMID: 8643627)
Mol Plant. 2015 Mar;8(3):439-53. (PMID: 25624148)
Front Plant Sci. 2020 Aug 07;11:1102. (PMID: 32849682)
Plant J. 2004 Aug;39(3):415-24. (PMID: 15255870)
Environ Pollut. 2010 Aug;158(8):2589-95. (PMID: 20542361)
Plant Cell. 2014 Aug;26(8):3387-402. (PMID: 25096783)
Front Plant Sci. 2022 Jun 22;13:868661. (PMID: 35812939)
J Struct Biol. 2016 Jan;193(1):23-32. (PMID: 26592710)
Theor Appl Genet. 2015 Oct;128(10):2085-98. (PMID: 26152574)
New Phytol. 2021 May;230(3):1049-1062. (PMID: 33474769)
J Exp Bot. 2021 Mar 17;72(6):2242-2259. (PMID: 33035327)
Plant J. 2001 Jan;25(2):159-67. (PMID: 11169192)
Plant Cell Environ. 2012 Oct;35(10):1837-59. (PMID: 22506799)
J Biol Chem. 2011 Feb 18;286(7):5446-54. (PMID: 21156806)
Front Plant Sci. 2023 Jul 21;14:1213456. (PMID: 37546266)
Genet Mol Biol. 2017;40(1 suppl 1):238-252. (PMID: 28323300)
Sci Rep. 2020 Mar 19;10(1):5079. (PMID: 32193423)
Front Plant Sci. 2022 Mar 24;13:856514. (PMID: 35401612)
Front Plant Sci. 2022 Feb 24;13:798580. (PMID: 35283928)
BMC Plant Biol. 2011 Jan 25;11:20. (PMID: 21266036)
Rice (N Y). 2014 Dec;7(1):18. (PMID: 26224551)
Rice (N Y). 2013 Nov 20;6(1):31. (PMID: 24280309)
J Biol Chem. 2009 Feb 6;284(6):3470-9. (PMID: 19049971)
Front Plant Sci. 2022 Nov 07;13:944624. (PMID: 36420033)
Metallomics. 2017 Jul 19;9(7):813-823. (PMID: 28686269)
Physiol Plant. 2018 Apr 14;:. (PMID: 29655221)
Eur J Biochem. 2004 Sep;271(18):3657-64. (PMID: 15355342)
Annu Rev Plant Biol. 2012;63:131-52. (PMID: 22404471)
Plant Cell. 2019 Jan;31(1):189-209. (PMID: 30563847)
Plant Cell Physiol. 2021 Sep 24;62(4):624-640. (PMID: 33561287)
New Phytol. 2009;183(4):1072-1084. (PMID: 19549134)
Nature. 1999 Feb 25;397(6721):694-7. (PMID: 10067892)
Plant Direct. 2020 Oct 21;4(10):e00272. (PMID: 33103043)
Science. 2006 Nov 24;314(5803):1295-8. (PMID: 17082420)
Front Plant Sci. 2016 Jun 29;7:974. (PMID: 27446193)
Plant Cell Environ. 2017 Apr;40(4):570-584. (PMID: 26991510)
Mol Breed. 2015;35(2):81. (PMID: 25705117)
J Cell Biol. 2017 Feb;216(2):463-476. (PMID: 28100685)
Front Plant Sci. 2019 Jun 12;10:746. (PMID: 31244872)
Front Plant Sci. 2021 Jun 02;12:660303. (PMID: 34149757)
PLoS One. 2020 Jan 3;15(1):e0223086. (PMID: 31899771)
Nat Commun. 2013;4:2792. (PMID: 24253678)
Curr Opin Plant Biol. 2013 May;16(2):147-56. (PMID: 23518283)
Nature. 2012 Oct 25;490(7421):497-501. (PMID: 23034647)
Nat Genet. 2018 Feb;50(2):285-296. (PMID: 29358651)
Rice (N Y). 2014 May 30;7(1):8. (PMID: 24920973)
Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10619-24. (PMID: 18647837)
Planta. 2020 Apr 06;251(5):94. (PMID: 32253515)
J Exp Bot. 2013 Jan;64(2):433-43. (PMID: 23162122)
Front Plant Sci. 2019 May 08;10:579. (PMID: 31134118)
Trends Plant Sci. 2015 Feb;20(2):124-33. (PMID: 25499025)
Mol Biol Rep. 2010 Dec;37(8):3735-45. (PMID: 20217243)
Plant Sci. 2000 Sep 8;158(1-2):71-76. (PMID: 10996246)
Plant Physiol. 2015 Dec;169(4):2608-23. (PMID: 26468517)
Annu Rev Plant Biol. 2019 Apr 29;70:639-665. (PMID: 31035826)
Plant J. 2006 Feb;45(3):335-46. (PMID: 16412081)
Biochim Biophys Acta Mol Cell Res. 2019 Dec;1866(12):118535. (PMID: 31446062)
New Phytol. 2019 Oct;224(1):11-18. (PMID: 31220347)
Plant J. 2009 Feb;57(3):400-12. (PMID: 18826427)
Physiol Plant. 2008 Jul;133(3):481-9. (PMID: 18346071)
Annu Rev Plant Biol. 2014;65:125-53. (PMID: 24498975)
Rice (N Y). 2015 Dec;8(1):36. (PMID: 26054239)
Plant Sci. 2012 Jul;190:24-39. (PMID: 22608517)
Nat Biotechnol. 1999 Feb;17(2):192-6. (PMID: 10052358)
Front Plant Sci. 2019 Jun 04;10:660. (PMID: 31231401)
Plant Physiol. 1994 Mar;104(3):815-820. (PMID: 12232127)
Plant Physiol. 2009 Jun;150(2):786-800. (PMID: 19376836)
Rice (N Y). 2015 Feb 25;8:13. (PMID: 25844118)
Planta. 2003 Feb;216(4):541-51. (PMID: 12569395)
Int J Phytoremediation. 2018;20(13):1284-1291. (PMID: 30666895)
Front Plant Sci. 2019 Jun 04;10:700. (PMID: 31214220)
Plant J. 2012 Nov;72(3):400-10. (PMID: 22731699)
Sci Rep. 2019 Nov 6;9(1):16144. (PMID: 31695138)
Biochim Biophys Acta. 2010 Aug;1800(8):806-14. (PMID: 20026187)
Plant Mol Biol. 2012 Aug;79(6):583-94. (PMID: 22644443)
Front Plant Sci. 2022 Oct 24;13:1019669. (PMID: 36352872)
فهرسة مساهمة: Keywords: iron excess; iron toxicity; nutrient; reactive oxygen species; rice
تواريخ الأحداث: Date Created: 20240805 Latest Revision: 20240806
رمز التحديث: 20240806
مُعرف محوري في PubMed: PMC11294178
DOI: 10.3389/fpls.2024.1381856
PMID: 39100081
قاعدة البيانات: MEDLINE
الوصف
تدمد:1664-462X
DOI:10.3389/fpls.2024.1381856