دورية أكاديمية

Niche breadth and divergence in sympatric cryptic coral species ( Pocillopora spp.) across habitats within reefs and among algal symbionts.

التفاصيل البيبلوغرافية
العنوان: Niche breadth and divergence in sympatric cryptic coral species ( Pocillopora spp.) across habitats within reefs and among algal symbionts.
المؤلفون: Burgess SC; Department of Biological Science Florida State University Tallahassee Florida USA., Turner AM; Department of Biological Science Florida State University Tallahassee Florida USA., Johnston EC; Department of Biological Science Florida State University Tallahassee Florida USA.; Present address: Hawai'i Institute of Marine Biology Kāne'ohe Hawaii USA.
المصدر: Evolutionary applications [Evol Appl] 2024 Aug 02; Vol. 17 (8), pp. e13762. Date of Electronic Publication: 2024 Aug 02 (Print Publication: 2024).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Pub Country of Publication: England NLM ID: 101461828 Publication Model: eCollection Cited Medium: Print ISSN: 1752-4571 (Print) Linking ISSN: 17524571 NLM ISO Abbreviation: Evol Appl Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: [Oxford] : Blackwell Pub.
مستخلص: While the presence of morphologically cryptic species is increasingly recognized, we still lack a useful understanding of what causes and maintains co-occurring cryptic species and its consequences for the ecology, evolution, and conservation of communities. We sampled 724 Pocillopora corals from five habitat zones (the fringing reef, back reef, and fore reef at 5, 10, and 20 m) at four sites around the island of Moorea, French Polynesia. Using validated genetic markers, we identified six sympatric species of Pocillopora , most of which cannot be reliably identified based on morphology: P. meandrina (42.9%), P. tuahiniensis (25.1%), P. verrucosa (12.2%), P. acuta (10.4%), P. grandis (7.73%), and P. cf. effusa (2.76%). For 423 colonies (58% of the genetically identified hosts), we also used psbA ncr or ITS2 markers to identify symbiont species (Symbiodiniaceae). The relative abundance of Pocillopora species differed across habitats within the reef. Sister taxa P. verrucosa and P. tuahiniensis had similar niche breadths and hosted the same specialist symbiont species (mostly Cladocopium pacificum ) but the former was more common in the back reef and the latter more common deeper on the fore reef. In contrast, sister taxa P. meandrina and P. grandis had the highest niche breadths and overlaps and tended to host the same specialist symbiont species (mostly C. latusorum ). Pocillopora acuta had the narrowest niche breadth and hosted the generalist, and more thermally tolerant, Durusdinium gynnii . Overall, there was a positive correlation between reef habitat niche breadth and symbiont niche breadth- Pocillopora species with a broader habitat niche also had a broader symbiont niche. Our results show how fine-scale variation within reefs plays an important role in the generation and coexistence of cryptic species. The results also have important implications for how niche differences affect community resilience, and for the success of coral restoration practices, in ways not previously appreciated.
Competing Interests: The authors declare no conflict of interest.
(© 2024 The Author(s). Evolutionary Applications published by John Wiley & Sons Ltd.)
References: Mol Ecol. 2015 Feb;24(3):525-44. (PMID: 25529046)
Sci Rep. 2017 Jul 20;7(1):5991. (PMID: 28729652)
ISME J. 2021 Nov;15(11):3271-3285. (PMID: 34012104)
PeerJ. 2018 Feb 8;6:e4355. (PMID: 29441239)
Sci Rep. 2018 May 9;8(1):7338. (PMID: 29743539)
C R Biol. 2008 Mar;331(3):239-47. (PMID: 18280989)
Mol Phylogenet Evol. 2023 Jul;184:107803. (PMID: 37120114)
Zootaxa. 2023 Nov 08;5369(1):117-124. (PMID: 38220724)
Am Nat. 2014 Aug;184(2):E16-31. (PMID: 25058289)
C R Biol. 2007 Feb;330(2):171-81. (PMID: 17303544)
ISME Commun. 2023 Apr 3;3(1):27. (PMID: 37009785)
Proc Natl Acad Sci U S A. 2023 Feb 21;120(8):e2202388120. (PMID: 36780524)
Curr Biol. 2018 Aug 20;28(16):2570-2580.e6. (PMID: 30100341)
Mol Ecol. 2013 Jul;22(14):3721-36. (PMID: 23786173)
Glob Chang Biol. 2021 Sep;27(18):4307-4321. (PMID: 34106494)
ISME J. 2020 Apr;14(4):945-958. (PMID: 31900444)
Evolution. 2014 Feb;68(2):352-67. (PMID: 24134732)
Evol Appl. 2024 Jan 26;17(1):e13644. (PMID: 38283599)
PLoS One. 2014 Jan 08;9(1):e85213. (PMID: 24416364)
Mol Ecol. 2022 Oct;31(20):5368-5385. (PMID: 35960256)
Curr Biol. 2014 Dec 15;24(24):2952-6. (PMID: 25454780)
Glob Chang Biol. 2020 Jun;26(6):3473-3481. (PMID: 32285562)
Trends Ecol Evol. 2007 Mar;22(3):148-55. (PMID: 17129636)
Evol Appl. 2022 Jul 07;16(2):293-310. (PMID: 36793689)
PLoS One. 2021 Sep 9;16(9):e0250725. (PMID: 34499664)
Evolution. 2008 Oct;62(10):2462-72. (PMID: 18637835)
Curr Biol. 2021 Jun 7;31(11):2286-2298.e8. (PMID: 33811819)
Science. 2005 Aug 26;309(5739):1363-5. (PMID: 16123298)
PLoS One. 2012;7(12):e50847. (PMID: 23227215)
Proc Biol Sci. 2023 Sep 27;290(2007):20231403. (PMID: 37727091)
PLoS Comput Biol. 2019 Apr 8;15(4):e1006650. (PMID: 30958812)
PeerJ. 2023 May 2;11:e15023. (PMID: 37151292)
Proc Natl Acad Sci U S A. 2020 Mar 10;117(10):5351-5357. (PMID: 32094188)
Front Microbiol. 2014 Aug 25;5:445. (PMID: 25202306)
Mol Phylogenet Evol. 2020 Dec;153:106944. (PMID: 32860973)
Int J Syst Evol Microbiol. 2003 Nov;53(Pt 6):1725-34. (PMID: 14657100)
Mol Ecol. 2018 Feb;27(3):613-635. (PMID: 29334414)
Nat Commun. 2023 Jan 6;14(1):25. (PMID: 36609386)
Oecologia. 2024 Mar;204(3):625-640. (PMID: 38418704)
Glob Chang Biol. 2021 Oct;27(20):5295-5309. (PMID: 34255912)
PLoS One. 2020 Jan 30;15(1):e0226631. (PMID: 31999709)
Mol Ecol. 2016 May;25(9):2093-110. (PMID: 26929004)
Glob Chang Biol. 2020 Mar;26(3):1367-1373. (PMID: 31912964)
Mol Ecol. 2020 Nov;29(22):4265-4273. (PMID: 33001521)
Mar Pollut Bull. 2021 Sep;170:112659. (PMID: 34217050)
PeerJ. 2018 May 23;6:e4816. (PMID: 29844969)
Sci Rep. 2018 Nov 9;8(1):16615. (PMID: 30413729)
Mol Ecol. 2024 May;33(9):e17342. (PMID: 38584356)
Sci Adv. 2023 Aug 11;9(32):eadf0954. (PMID: 37566650)
Syst Biol. 2007 Dec;56(6):879-86. (PMID: 18027281)
Mol Ecol. 2023 May;32(9):2151-2173. (PMID: 36869609)
Mol Ecol. 2011 Jan;20(2):311-25. (PMID: 21091563)
BMC Evol Biol. 2013 Sep 23;13:205. (PMID: 24059868)
Syst Biol. 2022 Feb 10;71(2):461-475. (PMID: 34542634)
Trends Ecol Evol. 1992 Apr;7(4):130-3. (PMID: 21235979)
Ecology. 2021 Jun;102(6):e03324. (PMID: 33690896)
Genes (Basel). 2019 Apr 27;10(5):. (PMID: 31035578)
Mol Ecol. 2018 Jul;27(14):2956-2971. (PMID: 29900626)
Mol Ecol. 2013 Aug;22(16):4335-4348. (PMID: 23906315)
Mol Ecol. 2021 Jul;30(14):3468-3484. (PMID: 33894013)
Nat Ecol Evol. 2022 Oct;6(10):1405-1407. (PMID: 36114282)
Trends Ecol Evol. 2017 Mar;32(3):167-173. (PMID: 28126409)
Oecologia. 2007 Nov;154(1):175-83. (PMID: 17684770)
Am Nat. 2014 Dec;184(6):702-13. (PMID: 25438171)
Sci Rep. 2017 Aug 15;7(1):8219. (PMID: 28811517)
Elife. 2021 Aug 13;10:. (PMID: 34387190)
فهرسة مساهمة: Keywords: Moorea; cryptic species; molecular ecology; niche partitioning; symbiosis; sympatry
سلسلة جزيئية: Dryad 10.5061/dryad.wh70rxwx4
تواريخ الأحداث: Date Created: 20240805 Latest Revision: 20240806
رمز التحديث: 20240806
مُعرف محوري في PubMed: PMC11294925
DOI: 10.1111/eva.13762
PMID: 39100752
قاعدة البيانات: MEDLINE
الوصف
تدمد:1752-4571
DOI:10.1111/eva.13762