دورية أكاديمية

Tetrahydroisoquinoline reduces angiogenesis by interacting myeloma cells with HUVECs mediated by extracellular vesicles.

التفاصيل البيبلوغرافية
العنوان: Tetrahydroisoquinoline reduces angiogenesis by interacting myeloma cells with HUVECs mediated by extracellular vesicles.
المؤلفون: Kooshari A; Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran., Shahriyary F; Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran., Shahidi M; Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran. Shahidi.m@iums.ac.ir., Vafajoo M; Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran., Amirzargar MR; Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran.
المصدر: Medical oncology (Northwood, London, England) [Med Oncol] 2024 Aug 05; Vol. 41 (9), pp. 217. Date of Electronic Publication: 2024 Aug 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 9435512 Publication Model: Electronic Cited Medium: Internet ISSN: 1559-131X (Electronic) Linking ISSN: 13570560 NLM ISO Abbreviation: Med Oncol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2011- : New York : Springer
Original Publication: Northwood, Middlesex, England : Science and Technology Letters, c1994-
مواضيع طبية MeSH: Human Umbilical Vein Endothelial Cells*/drug effects , Human Umbilical Vein Endothelial Cells*/metabolism , Multiple Myeloma*/pathology , Multiple Myeloma*/drug therapy , Multiple Myeloma*/metabolism , Extracellular Vesicles*/metabolism , Extracellular Vesicles*/drug effects , Neovascularization, Pathologic*/drug therapy , Neovascularization, Pathologic*/pathology , Neovascularization, Pathologic*/metabolism , Tetrahydroisoquinolines*/pharmacology , Cell Movement*/drug effects, Humans ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Coculture Techniques ; Angiogenesis Inhibitors/pharmacology ; Angiogenesis
مستخلص: Multiple myeloma (MM) is a neoplastic condition resulting from the uncontrolled expansion of B-cell-derived plasma cells. The importance of angiogenesis in MM development has also been demonstrated. Extracellular vesicles (EVs) have vital functions in interactions between neighboring cells, such as angiogenesis. The objective of this in vitro study was to examine the transfection and angiogenesis effects of MM-EVs on endothelial cells (ECs) upon treatment with Tetrahydroisoquinoline (THIQ) as a bioactive organic compound derivative from isoquinoline. Following treatment of multiple myeloma cells (U266) with THIQ, MM-EVs were harvested and transmigrated to human umbilical vein endothelial cells (HUVEC) in a co-culture model. EVs transmigration was traced by flow cytometry. Correspondingly, the expression of angiogenic genes and/or proteins in U266 cells and HUVECs was measured by RT-PCR and ELISA methods. Likewise, the proliferation and migration of HUVECs treated with THIQ-treated MM-EVs were visualized and estimated by performing both tube formation and scratch wound healing methods. Surprisingly, the anti-angiogenic effect of THIQ-treated MM-EVs was evident by the decreased expression of CD34, VEGFR2, and IL-6 at the mRNA and/or protein levels after internalization of MM-EVs in HUVEC. Finally, tube formation and scratch wound healing experiments showed inhibition of HUVEC cell proliferation and migration by THIQ-treated MM-EVs compared to control MM-EVs. MM-EVs derived from THIQ-treated myeloma cells (U266) inhibited angiogenesis in HUVECs. This phenomenon is coordinated by the internalized THIQ-treated MM-EVs in HUVECs, and ultimately the reduction of angiogenic factors and inhibition of tube formation and scratch wound healing.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Huang J, et al. The epidemiological landscape of multiple myeloma: a global cancer registry estimate of disease burden, risk factors, and temporal trends. Lancet Haematol. 2022;9(9):e670–7. (PMID: 10.1016/S2352-3026(22)00165-X35843248)
Anderson KC, Carrasco RD. Pathogenesis of myeloma. Annu Rev Pathol. 2011;6:249–74. (PMID: 10.1146/annurev-pathol-011110-13024921261519)
ME, J.F., et al., 2024 Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
Röllig C, Knop S, Bornhäuser M. Multiple myeloma. Lancet. 2015;385(9983):2197–208. (PMID: 10.1016/S0140-6736(14)60493-125540889)
Alanazi F, et al. New generation drugs for treatment of multiple myeloma. Drug Discovery Today. 2020;25(2):367–79. (PMID: 10.1016/j.drudis.2019.11.00831765717)
Saltarella I, et al. Anti-Angiogenic Activity of Drugs in Multiple Myeloma. Cancers. 2023;15(7):1990. (PMID: 10.3390/cancers150719903704665110093708)
Gkotzamanidou M, et al. Angiogenic cytokines profile in smoldering multiple myeloma: no difference compared to MGUS but altered compared to symptomatic myeloma. Med Sci Monit Int Med J Exp Clin Res. 2013;19:1188.
Lamanuzzi A, et al. Thrombopoietin promotes angiogenesis and disease progression in patients with multiple myeloma. Am J Pathol. 2021;191(4):748–58. (PMID: 10.1016/j.ajpath.2020.12.01633516787)
Liu Y, et al. Microvesicles secreted from human multiple myeloma cells promote angiogenesis. Acta Pharmacol Sin. 2014;35(2):230–8. (PMID: 10.1038/aps.2013.14124374814)
Anderson JD, et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of Angiogenesis via nuclear factor-KappaB signaling. Stem Cells. 2016;34(3):601–13. (PMID: 10.1002/stem.229826782178)
Lau NCH, Yam JWP. From exosome biogenesis to absorption: key takeaways for cancer research. Cancers. 2023;15(7):1992. (PMID: 10.3390/cancers150719923704665310093369)
Guo HM, et al. Microvesicles shed from bortezomib-treated or lenalidomide-treated human myeloma cells inhibit angiogenesis in vitro. Oncol Rep. 2018;39(6):2873–80. (PMID: 29693175)
Siemerink MJ, et al. CD34 marks angiogenic tip cells in human vascular endothelial cell cultures. Angiogenesis. 2012;15:151–63. (PMID: 10.1007/s10456-011-9251-z222499463274677)
Shahidi M, et al. Endothelial tip cell formation induced by chronic lymphocytic leukemia plasma (JAK2 positivity amplified this effect). J Hematop. 2017;10:9–15. (PMID: 10.1007/s12308-017-0291-1)
Singh IP, Shah P. Tetrahydroisoquinolines in therapeutics: a patent review (2010–2015). Expert Opin Ther Pat. 2017;27(1):17–36. (PMID: 10.1080/13543776.2017.123608427623022)
Scott JD, Williams RM. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem Rev. 2002;102(5):1669–730. (PMID: 10.1021/cr010212u11996547)
Kandinska MI, et al. Synthesis of Novel 1-Oxo-2, 3, 4-trisubstituted tetrahydroisoquinoline derivatives, bearing other heterocyclic moieties and comparative preliminary study of anti-coronavirus activity of selected compounds. Molecules. 2023;28(3):1495. (PMID: 10.3390/molecules28031495367711709921785)
Fang Y, et al. Synthesis and evaluation of tetrahydroisoquinoline-benzimidazole hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Eur J Med Chem. 2019;167:133–45. (PMID: 10.1016/j.ejmech.2019.02.00830771601)
Chrzanowska M, Grajewska A, Rozwadowska MD. Diastereoselective synthesis of (–)-6, 7-dimethoxy-1, 2, 3, 4-tetrahydroisoquinoline-1-carboxylic acid via morpholinone derivatives. Molecules. 2023;28(7):3200. (PMID: 10.3390/molecules280732003704996210095930)
Gangapuram M, et al. Design and synthesis of tetrahydroisoquinoline derivatives as anti-angiogenesis and anti-cancer agents. Anticancer Agents Med Chem. 2021;21(18):2505–11. (PMID: 10.2174/1871520621666210112122913334385608694809)
Huang Y, et al. Design, synthesis, and biological evaluation of tetrahydroisoquinoline-based diaryl urea derivatives for suppressing VEGFR-2 signaling. Anticancer Drugs. 2019;30(5):508–16. (PMID: 10.1097/CAD.000000000000071830531369)
Bernimoulin M, et al. Differential stimulation of monocytic cells results in distinct populations of microparticles. J Thromb Haemost. 2009;7(6):1019–28. (PMID: 10.1111/j.1538-7836.2009.03434.x195489093242443)
Atmaca H, Uzunoglu S. Anti-angiogenic effects of trabectedin (Yondelis; ET-743) on human breast cancer cells. Eur Cytokine Netw. 2014;25(1):1–7. (PMID: 10.1684/ecn.2014.034724941346)
Thompson CA, et al. Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. J Biol Chem. 2013;288(14):10093–9. (PMID: 10.1074/jbc.C112.444562234307393617250)
Roccaro AM, et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest. 2013;123(4):1542–55. (PMID: 10.1172/JCI66517234547493613927)
Shimma N, et al. Possible role of interleukin-6 in PC12 cell death induced by MPP+ and tetrahydroisoquinoline. J Pharmacol Sci. 2003;93(4):471–7. (PMID: 10.1254/jphs.93.47114737019)
Zhang B, et al. Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-catenin pathway. Stem Cells Transl Med. 2015;4(5):513–22. (PMID: 10.5966/sctm.2014-0267258241394414225)
Shabbir A, et al. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev. 2015;24(14):1635–47. (PMID: 10.1089/scd.2014.0316258671974499790)
Choi Y-C, et al. Regulation of vascular endothelial growth factor signaling by miR-200b. Mol Cells. 2011;32:77–82. (PMID: 10.1007/s10059-011-1042-2215446263887663)
Chen Y, Zhou X, Wu Y. The miR-26a-5p/IL-6 axis alleviates sepsis-induced acute kidney injury by inhibiting renal inflammation. Ren Fail. 2022;44(1):551–61. (PMID: 10.1080/0886022X.2022.2056486354918749067948)
Zanoaga O, et al. The role of miR-155 in nutrition: modulating cancer-associated inflammation. Nutrients. 2021;13(7):2245. (PMID: 10.3390/nu13072245342100468308226)
Gao J, et al. Tumor endothelial cell-derived extracellular vesicles contribute to tumor microenvironment remodeling. Cell Commun Signal. 2022;20(1):97. (PMID: 10.1186/s12964-022-00904-5357527989233793)
Sim S, et al. Design, synthesis, and biological evaluation of potent 1, 2, 3, 4-tetrahydroisoquinoline derivatives as anticancer agents targeting NF-κB signaling pathway. Bioorg Med Chem. 2021;46:116371. (PMID: 10.1016/j.bmc.2021.11637134500188)
Pan J, et al. Extracellular vesicles derived from glioblastoma promote proliferation and migration of neural progenitor cells via PI3K-Akt pathway. Cell Commun Signal. 2022;20(1):7. (PMID: 10.1186/s12964-021-00760-9350220578756733)
Cao F-J, et al. Effects of 2-aryl-1-cyano-1, 2, 3, 4-tetrohydroisoquinolines on apoptosis induction mechanism in NB4 and MKN-45 cells. Toxicol In Vitro. 2019;54:295–303. (PMID: 10.1016/j.tiv.2018.10.00730342220)
Qian Z, et al. The role of extracellular vesicles: an epigenetic view of the cancer microenvironment. Biomed Res Int. 2015;2015(1):649161. (PMID: 265824684637039)
Chen D, et al. Tetrahydroisoquinolines as novel histone deacetylase inhibitors for treatment of cancer. Acta pharmaceutica sinica B. 2016;6(1):93–9. (PMID: 10.1016/j.apsb.2015.11.002269044034724696)
Shao J, et al. Discovery of 2-substituted-N-(3-(3, 4-dihydroisoquinolin-2 (1H)-yl)-2-hydroxypropyl)-1, 2, 3, 4-tetrahydroisoquinoline-6-carboxamide as potent and selective protein arginine methyltransferases 5 inhibitors: Design, synthesis and biological evaluation. Eur J Med Chem. 2019;164:317–33. (PMID: 10.1016/j.ejmech.2018.12.06530605830)
Batagov AO, Kurochkin IV. Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3′-untranslated regions. Biol Direct. 2013;8:1–8. (PMID: 10.1186/1745-6150-8-12)
معلومات مُعتمدة: 99-3-5-19468 Iran University of Medical Sciences
فهرسة مساهمة: Keywords: Angiogenesis; Extracellular vesicles (EVs); IL-6; Multiple myeloma (MM); Tetrahydroisoquinoline (THIQ); Vascular endothelial growth factor receptor 2 (VEGFR-2)
المشرفين على المادة: 0 (Tetrahydroisoquinolines)
0 (Angiogenesis Inhibitors)
تواريخ الأحداث: Date Created: 20240805 Date Completed: 20240805 Latest Revision: 20240805
رمز التحديث: 20240805
DOI: 10.1007/s12032-024-02465-8
PMID: 39102060
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-131X
DOI:10.1007/s12032-024-02465-8