دورية أكاديمية

DNA methylation and gene expression as determinants of genome-wide cell-free DNA fragmentation.

التفاصيل البيبلوغرافية
العنوان: DNA methylation and gene expression as determinants of genome-wide cell-free DNA fragmentation.
المؤلفون: Noë M; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.; Netherlands Cancer Institute, Amsterdam, The Netherlands., Mathios D; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA., Annapragada AV; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA., Koul S; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA., Foda ZH; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA., Medina JE; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA., Cristiano S; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA., Cherry C; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA., Bruhm DC; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA., Niknafs N; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA., Adleff V; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA., Ferreira L; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA., Easwaran H; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA., Baylin S; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA., Phallen J; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA., Scharpf RB; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA. rscharpf@jhu.edu., Velculescu VE; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA. velculescu@jhmi.edu.
المصدر: Nature communications [Nat Commun] 2024 Aug 06; Vol. 15 (1), pp. 6690. Date of Electronic Publication: 2024 Aug 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: DNA Methylation* , Cell-Free Nucleic Acids*/genetics , Cell-Free Nucleic Acids*/blood , DNA Fragmentation* , CpG Islands*/genetics , Neoplasms*/genetics, Humans ; Animals ; Mice ; Epigenesis, Genetic ; Female ; Isocitrate Dehydrogenase/genetics ; Male ; Gene Expression Regulation, Neoplastic
مستخلص: Circulating cell-free DNA (cfDNA) is emerging as an avenue for cancer detection, but the characteristics of cfDNA fragmentation in the blood are poorly understood. We evaluate the effect of DNA methylation and gene expression on genome-wide cfDNA fragmentation through analysis of 969 individuals. cfDNA fragment ends more frequently contained CCs or CGs, and fragments ending with CGs or CCGs are enriched or depleted, respectively, at methylated CpG positions. Higher levels and larger sizes of cfDNA fragments are associated with CpG methylation and reduced gene expression. These effects are validated in mice with isogenic tumors with or without the mutant IDH1, and are associated with genome-wide changes in cfDNA fragmentation in patients with cancer. Tumor-related hypomethylation and increased gene expression are associated with decrease in cfDNA fragment size that may explain smaller cfDNA fragments in human cancers. These results provide a connection between epigenetic changes and cfDNA fragmentation with implications for disease detection.
(© 2024. The Author(s).)
References: Richmond, T. J., Finch, J. T., Rushton, B., Rhodes, D. & Klug, A. Structure of the nucleosome core particle at 7 Å resolution. Nature 311, 532–537 (1984). (PMID: 10.1038/311532a06482966)
Richmond, T. J. & Davey, C. A. The structure of DNA in the nucleosome core. Nature 423, 145–150 (2003). (PMID: 10.1038/nature0159512736678)
Ceppellini, R., Polli, E. & Celada, F. A DNA-reacting factor in serum of a patient with lupus erythematosus diffusus. Proc. Soc. Exp. Biol. Med. 96, 572–574 (1957). (PMID: 10.3181/00379727-96-2354413505795)
Miescher, P. & Strässle, R. New serological methods for the detection of the L. E. Factor. Vox Sang. 2, 283–287 (1957). (PMID: 13496698)
Seligmann, M. [Demonstration in the blood of patients with disseminated lupus erythematosus a substance determining a precipitation reaction with desoxyribonucleic acid]. Comptes Rendus Hebd. Des. Seances De. L’academie Des. Sci. 245, 243–245 (1957).
Robbins, W. C., Holman, H. R., Deicher, H. & Kunkel, H. G. Complement fixation with cell nuclei and DNA in lupus erythematosus. Proc. Soc. Exp. Biol. Med. 96, 575–579 (1957). (PMID: 10.3181/00379727-96-2354513505796)
Barra, G. B. et al. EDTA-mediated inhibition of DNases protects circulating cell-free DNA from ex vivo degradation in blood samples. Clin. Biochem. 48, 976–981 (2015). (PMID: 10.1016/j.clinbiochem.2015.02.01425746148)
Cristiano, S. et al. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature 570, 385–389 (2019). (PMID: 10.1038/s41586-019-1272-6311428406774252)
Snyder, M. W. et al. Comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164, 57–68 (2016). (PMID: 10.1016/j.cell.2015.11.050267714854715266)
Foda, Z. H. et al. Detecting liver cancer using cell-free DNA fragmentomes. Cancer Discov. 13, 616–631 (2023). (PMID: 10.1158/2159-8290.CD-22-065936399356)
Moss, J. et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat. Commun. 9, 5068 (2018). (PMID: 10.1038/s41467-018-07466-6304982066265251)
Loyfer, N. et al. A DNA methylation atlas of normal human cell types. Nature 613, 355–364 (2023). (PMID: 10.1038/s41586-022-05580-6365999889811898)
Fortin, J.-P. & Hansen, K. D. Reconstructing A/B compartments as revealed by Hi-C using long-range correlations in epigenetic data. Genome Biol. 16, 180 (2015). (PMID: 10.1186/s13059-015-0741-y263163484574526)
Collings, C. K., Waddell, P. J. & Anderson, J. N. Effects of DNA methylation on nucleosome stability. Nucleic Acids Res. 41, 2918–2931 (2013). (PMID: 10.1093/nar/gks893233556163597673)
Keshet, I., Yisraeli, J. & Cedar, H. Effect of regional DNA methylation on gene expression. Proc. Natl Acad. Sci. USA 82, 2560–2564 (1985). (PMID: 10.1073/pnas.82.9.25603857599397603)
Ulz, P. et al. Inferring expressed genes by whole-genome sequencing of plasma DNA. Nat. Genet. 48, 1273–1278 (2016). (PMID: 10.1038/ng.364827571261)
Esfahani, M. S. et al. Inferring gene expression from cell-free DNA fragmentation profiles. Nat. Biotechnol. 40, 585–597 (2022). (PMID: 10.1038/s41587-022-01222-4353619969337986)
Zhou, Q. et al. Epigenetic analysis of cell-free DNA by fragmentomic profiling. Proc. Natl Acad. Sci. USA 119, e2209852119 (2022). (PMID: 10.1073/pnas.2209852119362882879636966)
Chan, K. C. A. et al. Second generation noninvasive fetal genome analysis reveals de novo mutations, single-base parental inheritance, and preferred DNA ends. Proc. Natl Acad. Sci. USA 113, E8159–E8168 (2016). (PMID: 10.1073/pnas.1615800113277995615167168)
Serpas, L. et al. Dnase1l3 deletion causes aberrations in length and end-motif frequencies in plasma DNA. Proc. Natl Acad. Sci. USA 116, 641–649 (2019). (PMID: 10.1073/pnas.181503111630593563)
Jin, C. et al. Characterization of fragment sizes, copy number aberrations and 4‐mer end motifs in cell‐free DNA of hepatocellular carcinoma for enhanced liquid biopsy‐based cancer detection. Mol. Oncol. 15, 2377–2389 (2021). (PMID: 10.1002/1878-0261.13041341338468410516)
Trifonov, E. N. Cracking the chromatin code: precise rule of nucleosome positioning. Phys. Life Rev. 8, 39–50 (2011). (PMID: 10.1016/j.plrev.2011.01.00421295529)
Norris, D. P., Brockdorff, N. & Rastan, S. Methylation status of CpG-rich islands on active and inactive mouse X chromosomes. Mamm. Genome 1, 78–83 (1991). (PMID: 10.1007/BF024437821799791)
Tribioli, C. et al. Methylation and sequence analysis around Eagi sites: identification of 28 new CpG islands in XQ24-XQ28. Nucleic Acids Res. 20, 727–733 (1992). (PMID: 10.1093/nar/20.4.7271542569312011)
Duncan, C. G. et al. Dosage compensation and DNA methylation landscape of the X chromosome in mouse liver. Sci. Rep.-UK 8, 10138 (2018). (PMID: 10.1038/s41598-018-28356-3)
Zhu, F. et al. The interaction landscape between transcription factors and the nucleosome. Nature 562, 76–81 (2018). (PMID: 10.1038/s41586-018-0549-5302502506173309)
Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008). (PMID: 10.1126/science.1164382187723962820389)
Duncan, C. G. et al. A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation. Genome Res. 22, 2339–2355 (2012). (PMID: 10.1101/gr.132738.111228992823514664)
Wei, S. et al. Heterozygous IDH1R132H/WT created by “single base editing” inhibits human astroglial cell growth by downregulating YAP. Oncogene 37, 5160–5174 (2018). (PMID: 10.1038/s41388-018-0334-9298491226590918)
Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013). (PMID: 10.1016/j.cell.2013.09.034241201423910500)
Jiang, P. et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc. Natl Acad. Sci. USA 112, E1317–E1325 (2015). (PMID: 10.1073/pnas.1500076112256464274372002)
Giacona, M. B. et al. Cell-free DNA in human blood plasma. Pancreas 17, 89–97 (1998). (PMID: 10.1097/00006676-199807000-000129667526)
Mouliere, F. et al. High fragmentation characterizes tumour-derived circulating DNA. PLoS ONE 6, e23418 (2011). (PMID: 10.1371/journal.pone.0023418219094013167805)
Lapin, M. et al. Fragment size and level of cell-free DNA provide prognostic information in patients with advanced pancreatic cancer. J. Transl. Med. 16, 300 (2018). (PMID: 10.1186/s12967-018-1677-2304008026218961)
Underhill, H. R. Leveraging the fragment length of circulating tumour dna to improve molecular profiling of solid tumour malignancies with next-generation sequencing: a pathway to advanced non-invasive diagnostics in precision oncology? Mol. Diagn. Ther. 25, 389–408 (2021). (PMID: 10.1007/s40291-021-00534-6340181578249304)
Mouliere, F. et al. Circulating cell-free DNA from colorectal cancer patients may reveal high KRAS or BRAF mutation load. Transl. Oncol. 6, 319–IN8 (2013). (PMID: 10.1593/tlo.12445237304123660801)
Thierry, A. R. Circulating DNA fragmentomics and cancer screening. Cell Genom. 3, 100242 (2023). (PMID: 10.1016/j.xgen.2022.100242367771879903826)
Underhill, H. R. et al. Fragment length of circulating tumor DNA. PLoS Genet 12, e1006162 (2016). (PMID: 10.1371/journal.pgen.1006162274280494948782)
Jones, P. A. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3, 415–428 (2002). (PMID: 10.1038/nrg81612042769)
Phallen, J. et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. 9, eaan2415 (2017). (PMID: 10.1126/scitranslmed.aan2415288145446714979)
Baylin, S. B. et al. Abnormal patterns of DNA methylation in human neoplasia: potential consequences for tumor progression. Cancer Cells Cold Spring Harb. N. Y. 1989 3, 383–390 (1991).
Gama-Sosa, M. A. et al. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res. 11, 6883–6894 (1983). (PMID: 10.1093/nar/11.19.68836314264326421)
Shen, S. Y. et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 563, 579–583 (2018). (PMID: 10.1038/s41586-018-0703-030429608)
Li, S., Peng, Y., Landsman, D. & Panchenko, A. R. DNA methylation cues in nucleosome geometry, stability and unwrapping. Nucleic Acids Res. 50, 1864–1874 (2022). (PMID: 10.1093/nar/gkac097351668348881801)
An, Y. et al. DNA methylation analysis explores the molecular basis of plasma cell-free DNA fragmentation. Nat. Commun. 14, 287 (2023). (PMID: 10.1038/s41467-023-35959-6366533809849216)
Jensen, T. J. et al. Whole genome bisulfite sequencing of cell-free DNA and its cellular contributors uncovers placenta hypomethylated domains. Genome Biol. 16, 78 (2015). (PMID: 10.1186/s13059-015-0645-x258865724427941)
Han, D. S. C. et al. The biology of cell-free DNA fragmentation and the roles of DNASE1, DNASE1L3, and DFFB. Am. J. Hum. Genet. 106, 202–214 (2020). (PMID: 10.1016/j.ajhg.2020.01.008320044497010979)
Jiang, P. et al. Plasma DNA end-motif profiling as a fragmentomic marker in cancer, pregnancy, and transplantation. Cancer Discov. 10, 664–673 (2020). (PMID: 10.1158/2159-8290.CD-19-062232111602)
Annapragada, A. et al. Genome-wide repeat landscapes in cancer and cell-free DNA. Sci. Transl. Med. 16, eadj9283 (2024).
Mathios, D. et al. Detection and characterization of lung cancer using cell-free DNA fragmentomes. Nat. Commun. 12, 5060 (2021). (PMID: 10.1038/s41467-021-24994-w344174548379179)
Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015). (PMID: 10.1126/science.126041925613900)
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018). (PMID: 10.1093/bioinformatics/bty560304230866129281)
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). (PMID: 10.1038/nmeth.1923223882863322381)
Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015). (PMID: 10.1093/bioinformatics/btv098256978204765878)
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). (PMID: 10.1093/bioinformatics/btq033201102782832824)
Papp, E. et al. Integrated genomic, epigenomic, and expression analyses of ovarian cancer cell lines. Cell Rep. 25, 2617–2633 (2018). (PMID: 10.1016/j.celrep.2018.10.096304858246481945)
Aryee, M. J. et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30, 1363–1369 (2014). (PMID: 10.1093/bioinformatics/btu049244783394016708)
Cavalcante, R. G. & Sartor, M. A. annotatr: genomic regions in context. Bioinformatics 33, 2381–2383 (2017). (PMID: 10.1093/bioinformatics/btx183283693165860117)
Mathios, D. et al. Early detection of lung cancer using cfDNA fragmentation. J. Clin. Oncol. 39, 8519–8519 (2021). (PMID: 10.1200/JCO.2021.39.15_suppl.8519)
Peters, T. J. et al. De novo identification of differentially methylated regions in the human genome. Epigenet. Chromatin 8, 6 (2015). (PMID: 10.1186/1756-8935-8-6)
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 10.1093/bioinformatics/bts63523104886)
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 10.1186/s13059-014-0550-8255162814302049)
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005). (PMID: 10.1073/pnas.0506580102161995171239896)
Liberzon, A. et al. The molecular signatures database hallmark gene set collection. Cell Syst. 1, 417–425 (2015). (PMID: 10.1016/j.cels.2015.12.004267710214707969)
Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000). (PMID: 10.1093/nar/28.1.2710592173102409)
Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011). (PMID: 10.1093/bioinformatics/btr260215463933106198)
Adhireksan, Z. et al. Engineering nucleosomes for generating diverse chromatin assemblies. Nucleic Acids Res. 49, gkab070 (2021). (PMID: 10.1093/nar/gkab070)
معلومات مُعتمدة: T32 GM136577 United States GM NIGMS NIH HHS; U01 CA271896 United States CA NCI NIH HHS; R01 CA121113 United States CA NCI NIH HHS; UG1 CA233259 United States CA NCI NIH HHS; P50 CA062924 United States CA NCI NIH HHS; P30 CA006973 United States CA NCI NIH HHS
المشرفين على المادة: 0 (Cell-Free Nucleic Acids)
EC 1.1.1.41 (Isocitrate Dehydrogenase)
EC 1.1.1.42. (IDH1 protein, human)
تواريخ الأحداث: Date Created: 20240806 Date Completed: 20240806 Latest Revision: 20240809
رمز التحديث: 20240812
مُعرف محوري في PubMed: PMC11303779
DOI: 10.1038/s41467-024-50850-8
PMID: 39107309
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-024-50850-8