دورية أكاديمية

Intracranial meningioma: A review of recent and emerging data on the utility of preoperative imaging for management.

التفاصيل البيبلوغرافية
العنوان: Intracranial meningioma: A review of recent and emerging data on the utility of preoperative imaging for management.
المؤلفون: Beutler BD; Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA., Lee J; Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA., Edminster S; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA., Rajagopalan P; Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA., Clifford TG; Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA., Maw J; Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA., Zada G; Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA., Mathew AJ; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA., Hurth KM; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA., Artrip D; Department of Radiology and Imaging Services, University of Utah, Salt Lake City, Utah, USA., Miller AT; Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA., Assadsangabi R; Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
المصدر: Journal of neuroimaging : official journal of the American Society of Neuroimaging [J Neuroimaging] 2024 Aug 07. Date of Electronic Publication: 2024 Aug 07.
Publication Model: Ahead of Print
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 9102705 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-6569 (Electronic) Linking ISSN: 10512284 NLM ISO Abbreviation: J Neuroimaging Subsets: MEDLINE
أسماء مطبوعة: Publication: 2009- : Hoboken, NJ : Wiley
Original Publication: Boston, Mass. : Little, Brown and Co., c1991-
مستخلص: Meningiomas are the most common neoplasms of the central nervous system, accounting for approximately 40% of all brain tumors. Surgical resection represents the mainstay of management for symptomatic lesions. Preoperative planning is largely informed by neuroimaging, which allows for evaluation of anatomy, degree of parenchymal invasion, and extent of peritumoral edema. Recent advances in imaging technology have expanded the purview of neuroradiologists, who play an increasingly important role in meningioma diagnosis and management. Tumor vascularity can now be determined using arterial spin labeling and dynamic susceptibility contrast-enhanced sequences, allowing the neurosurgeon or neurointerventionalist to assess patient candidacy for preoperative embolization. Meningioma consistency can be inferred based on signal intensity; emerging machine learning technologies may soon allow radiologists to predict consistency long before the patient enters the operating room. Perfusion imaging coupled with magnetic resonance spectroscopy can be used to distinguish meningiomas from malignant meningioma mimics. In this comprehensive review, we describe key features of meningiomas that can be established through neuroimaging, including size, location, vascularity, consistency, and, in some cases, histologic grade. We also summarize the role of advanced imaging techniques, including magnetic resonance perfusion and spectroscopy, for the preoperative evaluation of meningiomas. In addition, we describe the potential impact of emerging technologies, such as artificial intelligence and machine learning, on meningioma diagnosis and management. A strong foundation of knowledge in the latest meningioma imaging techniques will allow the neuroradiologist to help optimize preoperative planning and improve patient outcomes.
(© 2024 The Author(s). Journal of Neuroimaging published by Wiley Periodicals LLC on behalf of American Society of Neuroimaging.)
References: Ostrom QT, Price M, Neff C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro Oncol. 2022;24:1–95.
Johnson MD, Abu‐Farsakh S. Clinicopathologic features of incidental meningiomas: a review of the literature and the University of Rochester autopsy experience. Clin Neuropathol. 2019;38:118–121.
Kuratsu J, Kochi M, Ushio Y. Incidence and clinical features of asymptomatic meningiomas. J Neurosurg. 2000;92:766–770.
Islim AI, Mohan M, Moon RDC, et al. Incidental intracranial meningiomas: a systematic review and meta‐analysis of prognostic factors and outcomes. J Neurooncol. 2019;142:211–221.
Apra C, Peyre M, Kalamarides M. Current treatment options for meningioma. Expert Rev Neurother. 2018;18:241–249.
Saraf S, McCarthy BJ, Villano JL. Update on meningiomas. Oncologist. 2011;16:1604–1613.
Bi WL, Dunn IF. Current and emerging principles in surgery for meningioma. Chin Clin Oncol. 2017;6:S7.
Behling F, Hempel JM, Schittenhelm J. Brain invasion in meningioma—a prognostic potential worth exploring. Cancers. 2021;13:3259.
Itamura K, Chang KE, Lucas J, et al. Prospective clinical validation of a meningioma consistency grading scheme: association with surgical outcomes and extent of tumor resection. J Neurosurg. 2018;131:1356–1360.
Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23:1231–1251.
Hsu CC, Pai CY, Kao HW, et al. Do aggressive imaging features correlate with advanced histopathological grade in meningiomas? J Clin Neurosci. 2010;17:584–587.
Liu L, Lu Y, Peng W, et al. Imaging features of intracranial psammomatous meningioma. J Neuroradiol. 2017;44:395–399.
Simpson D. The recurrence of intracranial meningiomas after surgical treatment. J Neurol Neurosurg Psychiatry. 1957;20:22–39.
Chotai S, Schwartz TH. The Simpson grading: is it still valid? Cancers. 2022;14:2007.
Kinjo T, al‐Mefty O, Kanaan I. Grade zero removal of supratentorial convexity meningiomas. Neurosurgery. 1993;33:394–399.
Tuleasca C, Aboukais R, Vannod‐Michel Q, et al. Intraoperative MRI for the microsurgical resection of meningiomas close to eloquent areas or dural sinuses: patient series. J Neurosurg Case Lessons. 2021;1:20149.
Giordano M, Gallieni M, Metwali H, et al. Can intraoperative magnetic resonance imaging be helpful in the surgical resection of parasellar meningiomas? A case series. World Neurosurg. 2019;132:577–584.
Soleman J, Fathi AR, Marbacher S, et al. The role of intraoperative magnetic resonance imaging in complex meningioma surgery. Magn Reson Imaging. 2013;31:923–929.
Armocida D, Catapano A, Palmieri M, et al. The surgical risk factors of giant intracranial meningiomas: a multi‐centric retrospective analysis of large case series. Brain Sci. 2022;12:817.
Sughrue ME, Rutkowski MJ, Shangari G, et al. Risk factors for the development of serious medical complications after resection of meningiomas. J Neurosurg. 2011;114:697–704.
Oya S, Ikawa F, Ichihara N, et al. Nation‐wide brain tumor registry‐based study of intracranial meningioma in Japan: analysis of surgery‐related risks. Neurol Med Chir. 2021;61:98–106.
Beer‐Furlan A, Vellutini EA, Gomes MQT, et al. Approach selection and surgical planning in posterior cranial fossa meningiomas: how I do it. J Neurol Surg B Skull Base. 2019;80:380–391.
Adachi K, Kawase T, Yoshida K, et al. ABC surgical risk scale for skull base meningioma: a new scoring system for predicting the extent of tumor removal and neurological outcome. J Neurosurg. 2009;111:1053–1061.
Jimenez AE, Chakravarti S, Liu S, et al. Predicting high‐value care outcomes after surgery for non‐skull base meningiomas. World Neurosurg. 2022;159:130–138.
Singhal S, Gill M, Srivastava C, et al. Simplifying tumor volume estimation from linear dimensions for intra‐cranial lesions treated with stereotactic radiosurgery. J Med Phys. 2020;45:199–205.
Tuna M, Göçer AI, Gezercan Y, et al. Huge meningiomas: a review of 93 cases. Skull Base Surg. 1999;9:227–238.
Nakano T, Asano K, Miura H, et al. Meningiomas with brain edema: radiological characteristics on MRI and review of the literature. Clin Imaging. 2002;26:243–249.
Kim BW, Kim MS, Kim SW, et al. Peritumoral brain edema in meningiomas: correlation of radiologic and pathologic features. J Korean Neurosurg Soc. 2011;49:26–30.
Ahmeti H, Caliebe A, Röcken C, et al. Impact of peritumoral brain edema on pre‐ and postoperative clinical conditions and on long‐term outcomes in patients with intracranial meningiomas. Eur J Med Res. 2023;28:40.
Osawa T, Tosaka M, Nagaishi M, et al. Factors affecting peritumoral brain edema in meningioma: special histological subtypes with prominently extensive edema. J Neurooncol. 2013;111:49–57.
Sindou M. Meningiomas invading the sagittal or transverse sinuses, resection with venous reconstruction. J Clin Neurosci. 2001;8:8–11.
Han MS, Kim YJ, Moon KS, et al. Lessons from surgical outcome for intracranial meningioma involving major venous sinus. Medicine. 2016;95:e4705.
Wang D, Lu Y, Yin B, et al. 3D fast spin‐echo T1 black‐blood imaging for the preoperative detection of venous sinus invasion by meningioma: comparison with contrast‐enhanced MRV. Clin Neuroradiol. 2019;29:65–73.
O'Sullivan MG, van Loveren HR, Tew JM Jr. The surgical resectability of meningiomas of the cavernous sinus. Neurosurgery. 1997;40:238–244.
Knosp E, Steiner E, Kitz K, et al. Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery. 1993;33:610–617.
Micko AS, Wöhrer A, Wolfsberger S, et al. Invasion of the cavernous sinus space in pituitary adenomas: endoscopic verification and its correlation with an MRI‐based classification. J Neurosurg. 2015;122:803–811.
Zhao B, Wei YK, Li GL, et al. Extended transsphenoidal approach for pituitary adenomas invading the anterior cranial base, cavernous sinus, and clivus: a single‐center experience with 126 consecutive cases. J Neurosurg. 2010;112:108–117.
Veldeman M, Rossmann T, Vartiainen N, et al. Subtemporal approach for cavernous sinus meningiomas—simple and effective. Surg Neurol Int. 2023;14:16.
Morisako H, Goto T, Ohata H, et al. Safe maximal resection of primary cavernous sinus meningiomas via a minimal anterior and posterior combined transpetrosal approach. Neurosurg Focus. 2018;44:e11.
Yamakami I, Hirai S, Yamaura A, et al. Venous system playing a key role in transpetrosal approach. No Shinkei Geka. 1998;26:699–707.
Solli E, Turbin RE. Primary and secondary optic nerve sheath meningioma. J Neurol Surg B Skull Base. 2021;82:27–71.
Kim JW, Rizzo JF, Lessell S. Controversies in the management of optic nerve sheath meningiomas. Int Ophthalmol Clin. 2005;45:15–23.
Meeker AR, Ko MW, Carruth BP, et al. Diagnosis of optic nerve sheath meningioma during optic nerve sheath decompression. Orbit. 2017;36:35–38.
Hénaux PL, Bretonnier M, Le Reste PJ, et al. Modern management of meningiomas compressing the optic nerve: a systematic review. World Neurosurg. 2018;118:e677–e686.
Miller NR. Primary tumours of the optic nerve and its sheath. Eye. 2004;18:1026–1037.
Castel A, Boschi A, Renard L, et al. Optic nerve sheath meningiomas: clinical features, functional prognosis and controversial treatment. Bull Soc Belge Ophtalmol. 2000;275:73–78.
Dutton JJ. Optic nerve sheath meningiomas. Surv Ophthalmol. 1992;37:167–183.
Zweckberger K, Unterberg AW, Schick U. Pre‐chiasmatic transection of the optic nerve can save contralateral vision in patients with optic nerve sheath meningioms. Clin Neurol Neurosurg. 2013;115:2426–2431.
Ortiz O, Schochet SS, Kotzan JM, et al. Radiologic‐pathologic correlation: meningioma of the optic nerve sheath. AJNR Am J Neuroradiol. 1996;17:901–906.
Sughrue ME, Rutkowski MJ, Aranda D, et al. Treatment decision making based on the published natural history and growth rate of small meningiomas. J Neurosurg. 2010;113:1036–1042.
Husum YS, Skogen K, Brandal P, et al. Bilateral calcification of the optic nerve sheath: a diagnostic dilemma. Am J Ophthalmol Case Rep. 2021;22:101106.
Schick U, Dott U, Hassler W. Surgical management of meningiomas involving the optic nerve sheath. J Neurosurg. 2004;101:951–959.
Kulwin C, Schwartz TH, Cohen‐Gadol AA. Endoscopic extended transsphenoidal resection of tuberculum sellae meningiomas: nuances of neurosurgical technique. Neurosurg Focus. 2013;35:e6.
Berhouma M, Jacquesson T, Abouaf L, et al. Endoscopic endonasal optic nerve and orbital apex decompression for nontraumatic optic neuropathy: surgical nuances and review of the literature. Neurosurg Focus. 2014;37:e19.
Lee JY, Ramakrishnan VR, Chiu AG, et al. Endoscopic endonasal surgical resection of tumors of the medial orbital apex and wall. Clin Neurol Neurosurg. 2012;114:93–98.
Zoli M, Manzoli L, Bonfatti R, et al. Endoscopic endonasal anatomy of the ophthalmic artery in the optic canal. Acta Neurochir. 2016;158:1343–1350.
Hunt PJ, DeMonte F, Tang RA, et al. Surgical resection of an optic nerve sheath meningioma: relevance of endoscopic endonasal approaches to the optic canal. J Neurol Surg Rep. 2017;78:e81–e85.
Ansari SF, Shah KJ, Hassaneen W, et al. Vascularity of meningiomas. Handb Clin Neurol. 2020;169:153–165.
McCracken DJ, Higginbotham RA, Boulter JH, et al. Degree of vascular encasement in sphenoid wing meningiomas predicts postoperative ischemic complications. Neurosurgery. 2017;80:957–966.
Shah A, Choudhri O, Jung H, et al. Preoperative endovascular embolization of meningiomas: update on therapeutic options. Neurosurg Focus. 2015;38:e7.
Sanchez RM, Vano E, Fernández JM, et al. Brain radiation doses to patients in an interventional neuroradiology laboratory. AJNR Am J Neuroradiol. 2014;35:1276–1280.
Yoo DH, Sohn CH, Cho YD, et al. Superselective pseudocontinuous arterial spin labeling in patients with meningioma: utility in prediction of feeding arteries and preoperative embolization feasibility. J Neurosurg. 2020;135:828–834.
Uetani H, Akter M, Hirai T, et al. Can 3T MR angiography replace DSA for the identification of arteries feeding intracranial meningiomas? AJNR Am J Neuroradiol. 2013;34:765–772.
Ogura R, Oishi M, Hiraishi T, et al. Four‐dimensional multifusion imaging for assessment of meningioma hemodynamics. Interdiscip Neurosurg. 2021;24:101118.
Nania A, Granata F, Vinci S, et al. Necrosis score, surgical time, and transfused blood volume in patients treated with preoperative embolization of intracranial meningiomas. Analysis of a single‐centre experience and a review of literature. Clin Neuroradiol. 2014;24:29–36.
Akimoto T, Ohtake M, Miyake S, et al. Preoperative tumor embolization prolongs time to recurrence of meningiomas: a retrospective propensity‐matched analysis. J Neurointerv Surg. 2023;15:814–820.
Yin Y, Li Y, Jiang Z, et al. Clinical outcomes and complications of preoperative embolization for intracranial giant meningioma tumorectomy: a retrospective, observational, matched cohort study. Front Oncol. 2022;12:852327.
Schartz D, Furst T, Ellens N, et al. Preoperative embolization of meningiomas facilitates reduced surgical complications and improved clinical outcomes: a meta‐analysis of matched cohort studies. Clin Neuroradiol. 2023;33:755–762.
Iampreechakul P, Yuthagovit S, Wangtanaphat K, et al. Preoperative transarterial embolization of a large petrotentorial angiomatous meningioma using combination of liquid embolic materials: a case report. Asian J Neurosurg. 2022;17:500–506.
Raper DM, Starke RM, Henderson F Jr, et al. Preoperative embolization of intracranial meningiomas: efficacy, technical considerations, and complications. AJNR Am J Neuroradiol. 2014;35:1798–1804.
Rosen CL, Ammerman JM, Sekhar LN, et al. Outcome analysis of preoperative embolization in cranial base surgery. Acta Neurochir. 2002;144:1157–1164.
Mayercik V, Ma M, Holdsworth S, et al. Arterial spin‐labeling MRI identifies hypervascular meningiomas. AJR Am J Roentgenol. 2019;213:1124–1128.
Toh CH, Wei KC, Chang CN, et al. Assessment of angiographic vascularity of meningiomas with dynamic susceptibility contrast‐enhanced perfusion‐weighted imaging and diffusion tensor imaging. AJNR Am J Neuroradiol. 2014;35:263–269.
Adachi K, Murayama K, Hayakawa M, et al. Objective and quantitative evaluation of angiographic vascularity in meningioma: parameters of dynamic susceptibility contrast‐perfusion‐weighted imaging as clinical indicators of preoperative embolization. Neurosurg Rev. 2021;44:2629–2638.
Yrjänä SK, Tuominen H, Karttunen A, et al. Low‐field MR imaging of meningiomas including dynamic contrast enhancement study: evaluation of surgical and histopathologic characteristics. AJNR Am J Neuroradiol. 2006;27:2128–2134.
Ghodrati F, Mekonnen M, Mahgerefteh N, et al. Preoperative meningioma vascularity index is associated with significantly increased intraoperative blood loss and greater risk of subtotal resection. J Neurooncol. 2023;161:583–591.
Higaki F, Inoue S, Oda W, et al. MRI multiparametric scoring system for pial blood supply of intracranial meningiomas. Acta Radiol Open. 2022;11:20584601221091208.
Aihara M, Naito I, Shimizu T, et al. Preoperative embolization of intracranial meningiomas using n‐butyl cyanoacrylate. Neuroradiology. 2015;57:713–719.
Waldron JS, Sughrue ME, Hetts SW, et al. Embolization of skull base meningiomas and feeding vessels arising from the internal carotid circulation. Neurosurgery. 2011;68:162–169.
Loon NW, Gendeh BS, Zakaria R, et al. Ophthalmic artery occlusion following neuro‐embolization of the external carotid artery, a case report. BMC Ophthalmol. 2017;17:92.
McLennan JE, Rosenbaum AE, Haughton VM. Internal carotid origins of the middle meningeal artery. The ophthalmic‐middle meningeal and stapedial‐middle meningeal arteries. Neuroradiology. 1974;7:265–275.
Adachi K, Hasegawa M, Hirose Y. Evaluation of venous drainage patterns for skull base meningioma surgery. Neurol Med Chir. 2017;57:505–512.
Cai Q, Wang S, Zheng M, et al. Risk factors influencing cerebral venous infarction after meningioma resection. BMC Neurol. 2022;22:259.
Zada G, Yashar P, Robison A, et al. A proposed grading system for standardizing tumor consistency of intracranial meningiomas. Neurosurg Focus. 2013;35:e1.
Chen TC, Zee CS, Miller CA, et al. Magnetic resonance imaging and pathological correlates of meningiomas. Neurosurgery. 1992;31:1015–1021.
Hoover JM, Morris JM, Meyer FB. Use of preoperative magnetic resonance imaging T1 and T2 sequences to determine intraoperative meningioma consistency. Surg Neurol Int. 2011;2:142.
Smith KA, Leever JD, Chamoun RB. Predicting consistency of meningioma by magnetic resonance imaging. J Neurol Surg B Skull Base. 2015;76:225–229.
Yogi A, Koga T, Azama K, et al. Usefulness of the apparent diffusion coefficient (ADC) for predicting the consistency of intracranial meningiomas. Clin Imaging. 2014;38:802–807.
Shiroishi MS, Cen SY, Tamrazi B, et al. Predicting meningioma consistency on preoperative neuroimaging studies. Neurosurg Clin N Am. 2016;27:145–154.
Hughes JD, Fattahi N, Van Gompel J, et al. Higher‐resolution magnetic resonance elastography in meningiomas to determine intratumoral consistency. Neurosurgery. 2015;77:653–658.
Shi Y, Huo Y, Pan C, et al. Use of magnetic resonance elastography to gauge meningioma intratumoral consistency and histotype. Neuroimage Clin. 2022;36:103173.
Murphy MC, Huston J 3rd, Glaser KJ, et al. Preoperative assessment of meningioma stiffness using magnetic resonance elastography. J Neurosurg. 2013;118:643–648.
Kashimura H, Inoue T, Ogasawara K, et al. Prediction of meningioma consistency using fractional anisotropy value measured by magnetic resonance imaging. J Neurosurg. 2007;107:784–787.
Romani R, Tang WJ, Mao Y, et al. Diffusion tensor magnetic resonance imaging for predicting the consistency of intracranial meningiomas. Acta Neurochir. 2014;156:1837–1845.
Yoneoka Y, Fujii Y, Takahashi H, et al. Pre‐operative histopathological evaluation of meningiomas by 3 0T T2R MRI. Acta Neurochir. 2002;144:953–957.
Chernov MF, Kasuya H, Nakaya K, et al. ¹H‐MRS of intracranial meningiomas: what it can add to known clinical and MRI predictors of the histopathological and biological characteristics of the tumor? Clin Neurol Neurosurg. 2011;113:202–212.
Hale AT, Wang L, Strother MK, et al. Differentiating meningioma grade by imaging features on magnetic resonance imaging. J Clin Neurosci. 2018;48:71–75.
Sacco S, Ballati F, Gaetani C, et al. Multi‐parametric qualitative and quantitative MRI assessment as predictor of histological grading in previously treated meningiomas. Neuroradiology. 2020;62:1441–1449.
Toh CH, Castillo M, Wong AM, et al. Differentiation between classic and atypical meningiomas with use of diffusion tensor imaging. AJNR Am J Neuroradiol. 2008;29:1630–1635.
Filippi CG, Edgar MA, Uluğ AM, et al. Appearance of meningiomas on diffusion‐weighted images: correlating diffusion constants with histopathologic findings. AJNR Am J Neuroradiol. 2001;22:65–72.
Salah F, Tabbarah A, ALArab YN, et al. Can CT and MRI features differentiate benign from malignant meningiomas? Clin Radiol. 2019;74:e15–e23.
Yao Y, Xu Y, Liu S, et al. Predicting the grade of meningiomas by clinical‐radiological features: a comparison of precontrast and postcontrast MRI. Front Oncol. 2022;12:1053089.
Yue Q, Isobe T, Shibata Y, et al. New observations concerning the interpretation of magnetic resonance spectroscopy of meningioma. Eur Radiol. 2008;18:2901–2911.
Haghighi Borujeini M, Farsizaban M, Yazdi SR, et al. Grading of meningioma tumors based on analyzing tumor volumetric histograms obtained from conventional MRI and apparent diffusion coefficient images. Egypt J Radiol Nucl Med. 2021;52:167.
Walcott BP, Nahed BV, Brastianos PK, et al. Radiation treatment for WHO grade II and III meningiomas. Front Oncol. 2013;3:227.
Hwang WL, Marciscano AE, Niemierko A, et al. Imaging and extent of surgical resection predict risk of meningioma recurrence better than WHO histopathological grade. Neuro Oncol. 2016;18:863–872.
Krishnan V, Mittal MK, Sinha M, et al. Imaging spectrum of meningiomas: a review of uncommon imaging appearances and their histopathological and prognostic significance. Pol J Radiol. 2019;84:e630–e653.
Liu Z, Wang C, Wang H, et al. Clinical characteristics and treatment of angiomatous meningiomas: a report of 27 cases. Int J Clin Exp Pathol. 2013;6:695–702.
Chen CJ, Tseng YC, Hsu HL, et al. Microcystic meningioma: importance of obvious hypointensity on T1‐weighted magnetic resonance images. J Comput Assist Tomogr. 2008;32:130–134.
Liu JL, Zhou JL, Ma YH, et al. An analysis of the magnetic resonance imaging and pathology of intracal lymphoplasmacyte‐rich meningioma. Eur J Radiol. 2012;81:968–973.
Shibuya M. Pathology and molecular genetics of meningioma: recent advances. Neurol Med Chir. 2015;55:14–27.
Bečulić H, Skomorac R, Jusić A, et al. Correlation of peritumoral brain edema with morphological characteristics and Ki‐67 proliferative index in resected intracranial meningiomas. Acta Clin Croat. 2019;58:42–49.
Paek SH, Kim CY, Kim YY, et al. Correlation of clinical and biological parameters with peritumoral edema in meningioma. J Neurooncol. 2002;60:235–245.
Tamiya T, Ono Y, Matsumoto K, et al. Peritumoral brain edema in intracranial meningiomas: effects of radiological and histological factors. Neurosurgery. 2001;49:1046–1051.
Tamrazi B, Shiroishi MS, Liu CS. Advanced imaging of intracranial meningiomas. Neurosurg Clin N Am. 2016;27:137–143.
Lu Y, Xiong J, Yin B, et al. The role of three‐dimensional pseudo‐continuous arterial spin labelling in grading and differentiating histological subgroups of meningiomas. Clin Radiol. 2018;73:176–184.
Kimura H, Takeuchi H, Koshimoto Y, et al. Perfusion imaging of meningioma by using continuous arterial spin‐labeling: comparison with dynamic susceptibility‐weighted contrast‐enhanced MR images and histopathologic features. AJNR Am J Neuroradiol. 2006;27:85–93.
Ikushima I, Korogi Y, Kuratsu J, et al. Dynamic MRI of meningiomas and schwannomas: is differential diagnosis possible? Neuroradiology. 1997;39:633–638.
Hussain NS, Moisi MD, Keogh B, et al. Dynamic susceptibility contrast and dynamic contrast‐enhanced MRI characteristics to distinguish microcystic meningiomas from traditional grade I meningiomas and high‐grade gliomas. J Neurosurg. 2017;126:1220–1226.
Zhang H, Rödiger LA, Shen T, et al. Preoperative subtyping of meningiomas by perfusion MR imaging. Neuroradiology. 2008;50:835–840.
Tugnoli V, Schenetti L, Mucci A, et al. Ex vivo HR‐MAS MRS of human meningiomas: a comparison with in vivo 1H MR spectra. Int J Mol Med. 2006;18:859–869.
Afshar‐Oromieh A, Giesel FL, Linhart HG, et al. Detection of cranial meningiomas: comparison of ⁶⁸Ga‐DOTATOC PET/CT and contrast‐enhanced MRI. Eur J Nucl Med Mol Imaging. 2012;39:1409–1415.
Prasad RN, Perlow HK, Bovi J, et al. 68Ga‐DOTATATE PET: the future of meningioma treatment. Int J Radiat Oncol Biol Phys. 2022;113:868–871.
Galldiks N, Albert NL, Sommerauer M, et al. PET imaging in patients with meningioma‐report of the RANO/PET Group. Neuro Oncol. 2017;19:1576–1587.
Mahase SS, Roth O'Brien DA, No D, et al. [68Ga]‐DOTATATE PET/MRI as an adjunct imaging modality for radiation treatment planning of meningiomas. Neurooncol Adv. 2021;3:12.
Kowalski ES, Khairnar R, Gryaznov AA, et al. 68Ga‐DOTATATE PET‐CT as a tool for radiation planning and evaluating treatment responses in the clinical management of meningiomas. Radiat Oncol. 2021;16:151.
Kim SH, Roytman M, Madera G, et al. Evaluating diagnostic accuracy and determining optimal diagnostic thresholds of different approaches to [68Ga]‐DOTATATE PET/MRI analysis in patients with meningioma. Sci Rep. 2022;12:9256.
Slot KM, Verbaan D, Buis DR, et al. Prediction of meningioma WHO grade using PET findings: a systematic review and meta‐analysis. J Neuroimaging. 2021;31:6–19.
Liu RS, Chang CP, Guo WY, et al. 1–11C‐acetate versus 18F‐FDG PET in detection of meningioma and monitoring the effect of gamma‐knife radiosurgery. J Nucl Med. 2010;51:883–891.
Sommerauer M, Burkhardt JK, Frontzek K, et al. 68Gallium‐DOTATATE PET in meningioma: a reliable predictor of tumor growth rate? Neuro Oncol. 2016;18:1021–1027.
Bashir A, Binderup T, Vestergaard MB, et al. In vivo imaging of cell proliferation in meningioma using 3'‐deoxy‐3'‐[18F]fluorothymidine PET/MRI. Eur J Nucl Med Mol Imaging. 2020;47:1496–1509.
Arita H, Kinoshita M, Okita Y, et al. Clinical characteristics of meningiomas assessed by ¹¹C‐methionine and ¹⁸F‐fluorodeoxyglucose positron‐emission tomography. J Neurooncol. 2012;107:379–386.
Giovacchini G, Fallanca F, Landoni C, et al. C‐11 choline versus F‐18 fluorodeoxyglucose for imaging meningiomas: an initial experience. Clin Nucl Med. 2009;34:7–10.
Dunet V, Pomoni A, Hottinger A, et al. Performance of 18F‐FET versus 18F‐FDG‐PET for the diagnosis and grading of brain tumors: systematic review and meta‐analysis. Neuro Oncol. 2016;18:426–434.
Cornelius JF, Langen KJ, Stoffels G, et al. Positron emission tomography imaging of meningioma in clinical practice: review of literature and future directions. Neurosurgery. 2012;70:1033–1041.
Zahid A, Johnson DR, Kizilbash SH. Efficacy of 177Lu‐Dotatate therapy in the treatment of recurrent meningioma. Mayo Clin Proc Innov Qual Outcomes. 2021;5:236–240.
Goldbrunner R, Minniti G, Preusser M, et al. EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol. 2016;17:e383–e391.
Ahn YH, Kang DY, Park SB, et al. Allergic‐like hypersensitivity reactions to gadolinium‐based contrast agents: an 8‐year cohort study of 154,539 patients. Radiology. 2022;303:329–336.
Woolen SA, Shankar PR, Gagnier JJ, et al. Risk of Nephrogenic systemic fibrosis in patients with stage 4 or 5 chronic kidney disease receiving a group II gadolinium‐based contrast agent: a systematic review and meta‐analysis. JAMA Intern Med. 2020;180:223–230.
Mallio CA, Quattrocchi CC, Rovira À, et al. Gadolinium deposition safety: seeking the patient's perspective. AJNR Am J Neuroradiol. 2020;41:944–946.
Boto J, Guatta R, Fitsiori A, et al. Is contrast medium really needed for follow‐up MRI of untreated intracranial meningiomas? AJNR Am J Neuroradiol. 2021;42:1421–1428.
Alonso SM, Lersy F, Ardellier FD, et al. Is non‐contrast MRI sufficient to detect meningioma residue after surgery? J Neuroradiol. 2024;51:176–181.
Rahatli FK, Donmez FY, Kesim C, et al. Can unenhanced brain magnetic resonance imaging be used in routine follow up of meningiomas to avoid gadolinium deposition in brain? Clin Imaging. 2019;53:155–161.
He JQ, Iv M, Li G, et al. Noncontrast T2‐weighted magnetic resonance imaging sequences for long‐term monitoring of asymptomatic convexity meningiomas. World Neurosurg. 2020;135:e100–e105.
Asthagiri AR, Parry DM, Butman JA, et al. Neurofibromatosis type 2. Lancet. 2009;373:1974–1986.
Proctor DT, Ramachandran S, Lama S, et al. Towards molecular classification of meningioma: evolving treatment and diagnostic paradigms. World Neurosurg. 2018;119:366–373.
Goutagny S, Bah AB, Henin D, et al. Long‐term follow‐up of 287 meningiomas in neurofibromatosis type 2 patients: clinical, radiological, and molecular features. Neuro Oncol. 2012;14:1090–1096.
Bachir S, Shah S, Shapiro S, et al. Neurofibromatosis type 2 (NF2) and the implications for vestibular schwannoma and meningioma pathogenesis. Int J Mol Sci. 2021;22:690.
Mautner VF, Lindenau M, Baser ME, et al. The neuroimaging and clinical spectrum of neurofibromatosis 2. Neurosurgery. 1996;38:880–885.
Lloyd SK, Evans DG. Neurofibromatosis type 2 (NF2): diagnosis and management. Handb Clin Neurol. 2013;115:957–967.
Ahlawat S, Blakeley JO, Langmead S, et al. Current status and recommendations for imaging in neurofibromatosis type 1, neurofibromatosis type 2, and schwannomatosis. Skeletal Radiol. 2020;49:199–219.
Wang MX, Dillman JR, Guccione J, et al. Neurofibromatosis from head to toe: what the radiologist needs to know. Radiographics. 2022;42:1123–1144.
Pemov A, Dewan R, Hansen NF, et al. Comparative clinical and genomic analysis of neurofibromatosis type 2‐associated cranial and spinal meningiomas. Sci Rep. 2020;10:12563.
Lee GC, Choi SW, Kim SH, et al. Multiple extracranial metastases of atypical meningiomas. J Korean Neurosurg Soc. 2009;45:107–111.
Beutler BD, Nguyen ET, Parker RA, et al. Metastatic meningioma: case report of a WHO grade I meningioma with liver metastases and review of the literature. Radiol Case Rep. 2019;15:110–116.
Erkutlu I, Buyukhatipoglu H, Alptekin M, et al. Spinal drop metastases from a papillary meningioma: a case report and review of the literature: utility of CSF sampling. Med Oncol. 2009;26:242–246.
Park KS, Kim KH, Park SH, et al. Intracranial meningioma with leptomeningeal dissemination: retrospective study with review of the literature. J Korean Neurosurg Soc. 2015;57:258–265.
Cabada T, Bermejo R, Bacaicoa C, et al. Metastatic meningioma: the role of whole‐body diffusion‐weighted imaging. Oncol Lett. 2011;2:931–933.
Elder JB, Atkinson R, Zee CS, et al. Primary intraosseous meningioma. Neurosurg Focus. 2007;23:e13.
Lang FF, Macdonald OK, Fuller GN, et al. Primary extradural meningiomas: a report on nine cases and review of the literature from the era of computerized tomography scanning. J Neurosurg. 2000;93:940–950.
Younis G, Sawaya R. Intracranial osteolytic malignant meningiomas appearing as extracranial soft‐tissue masses. Neurosurgery. 1992;30:932–935.
Elwatidy S, Alanazi A, Alanazi RF, et al. Intraosseous meningioma, a rare presentation of a common brain tumor: illustrative case. J Neurosurg Case Lessons. 2022;4:22331.
Elder TA, Yokoi H, Chugh AJ, et al. En plaque meningiomas: a narrative review. J Neurol Surg B Skull Base. 2021;82(Suppl 3):e33–e44.
Pieper DR, Al‐Mefty O, Hanada Y, et al. Hyperostosis associated with meningioma of the cranial base: secondary changes or tumor invasion. Neurosurgery. 1999;44:742–746.
Palma L, Celli P, Franco C, et al. Long‐term prognosis for atypical and malignant meningiomas: a study of 71 surgical cases. Neurosurg Focus. 1997;2:e3.
Bikmaz K, Mrak R, Al‐Mefty O. Management of bone‐invasive, hyperostotic sphenoid wing meningiomas. J Neurosurg. 2007;107:905–912.
Terstegge K, Schörner W, Henkes H, et al. Hyperostosis in meningiomas: MR findings in patients with recurrent meningioma of the sphenoid wings. AJNR Am J Neuroradiol. 1994;15:555–560.
Takase H, Yamamoto T. Bone invasive meningioma: recent advances and therapeutic perspectives. Front Oncol. 2022;12:895374.
Fathalla H, Tawab MGA, El‐Fiki A. Extent of hyperostotic bone resection in convexity meningioma to achieve pathologically free margins. J Korean Neurosurg Soc. 2020;63:821–826.
Husaini TA. An unusual osteolytic meningioma. J Pathol. 1970;101:57–58.
Tokgoz N, Oner YA, Kaymaz M, et al. Primary intraosseous meningioma: CT and MRI appearance. AJNR Am J Neuroradiol. 2005;26:2053–2056.
Lui YW, Malhotra A, Farinhas JM, et al. Dynamic perfusion MRI characteristics of dural metastases and meningiomas: a pilot study characterizing the first‐pass wash‐in phase beyond relative cerebral blood volume. AJR Am J Roentgenol. 2011;196:886–890.
Zhang H, Rödiger LA, Shen T, et al. Perfusion MR imaging for differentiation of benign and malignant meningiomas. Neuroradiology. 2008;50:525–530.
Watts J, Box G, Galvin A, et al. Magnetic resonance imaging of meningiomas: a pictorial review. Insights Imaging. 2014;5:113–122.
Furtner J, Oth I, Schöpf V, et al. Noninvasive Differentiation of meningiomas and dural metastases using intratumoral vascularity obtained by arterial spin labeling. Clin Neuroradiol. 2020;30:599–605.
Weon YC, Kim EY, Kim HJ, et al. Intracranial solitary fibrous tumors: imaging findings in 6 consecutive patients. AJNR Am J Neuroradiol. 2007;28:1466–1469.
Bravo‐Tsri AEB, Konaté I, Kouassi KPB, et al. Meningeal tuberculoma mimicking a brain tumor. Radiol Case Rep. 2020;16:284–288.
Rahmah N, Brotoarianto H, Andor E, et al. Dural plasmacytoma mimicking meningioma in a young patient with multiple myeloma. Biomed Imaging Interv J. 2009;5:e5.
Zhang D, Hu LB, Henning TD, et al. MRI findings of primary CNS lymphoma in 26 immunocompetent patients. Korean J Radiol. 2010;11:269–277.
Zhai Y, Song D, Yang F, et al. Preoperative prediction of meningioma consistency via machine learning‐based radiomics. Front Oncol. 2021;11:657288.
Zhu Y, Man C, Gong L, et al. A deep learning radiomics model for preoperative grading in meningioma. Eur J Radiol. 2019;116:128–134.
Chen H, Li S, Zhang Y, et al. Deep learning‐based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study. Eur Radiol. 2022;32:7248–7259.
Li M, Liu L, Qi J, et al. MRI‐based machine learning models predict the malignant biological behavior of meningioma. BMC Med Imaging. 2023;23:141.
Niu L, Zhou X, Duan C, et al. Differentiation researches on the meningioma subtypes by radiomics from contrast‐enhanced magnetic resonance imaging: a preliminary study. World Neurosurg. 2019;126:e646–e652.
Joo L, Park JE, Park SY, et al. Extensive peritumoral edema and brain‐to‐tumor interface MRI features enable prediction of brain invasion in meningioma: development and validation. Neuro Oncol. 2021;23:324–333.
Li X, Lu Y, Xiong J, et al. Presurgical differentiation between malignant haemangiopericytoma and angiomatous meningioma by a radiomics approach based on texture analysis. J Neuroradiol. 2019;46:281–287.
Wei J, Li L, Han Y, et al. Accurate preoperative distinction of intracranial hemangiopericytoma from meningioma using a multihabitat and multisequence‐based radiomics diagnostic technique. Front Oncol. 2020;10:534.
Yan PF, Yan L, Hu TT, et al. The potential value of preoperative MRI texture and shape analysis in grading ceningiomas: a preliminary investigation. Transl Oncol. 2017;10:570–577.
Park YW, Oh J, You SC, et al. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging. Eur Radiol. 2019;29:4068–4076.
Vassantachart A, Cao Y, Gribble M, et al. Automatic differentiation of grade I and II meningiomas on magnetic resonance image using an asymmetric convolutional neural network. Sci Rep. 2022;12:3806.
Krähling H, Musigmann M, Akkurt BH, et al. A magnetic resonance imaging based radiomics model to predict mitosis cycles in intracranial meningioma. Sci Rep. 2023;13:969.
Cepeda S, Arrese I, García‐García S, et al. Meningioma consistency can be defined by combining the radiomic features of magnetic resonance imaging and ultrasound elastography. A pilot study using machine learning classifiers. World Neurosurg. 2021;146:e1147–e1159.
Zhang J, Yao K, Liu P, et al. A radiomics model for preoperative prediction of brain invasion in meningioma non‐invasively based on MRI: a multicentre study. EBioMedicine. 2020;58:102933.
Li N, Mo Y, Huang C, et al. A clinical semantic and radiomics nomogram for predicting brain invasion in WHO grade II meningioma based on tumor and tumor‐to‐brain interface features. Front Oncol. 2021;11:752158.
Park CJ, Choi SH, Eom J, et al. An interpretable radiomics model to select patients for radiotherapy after surgery for WHO grade 2 meningiomas. Radiat Oncol. 2022;17:147.
Zhang Y, Chen JH, Chen TY, et al. Radiomics approach for prediction of recurrence in skull base meningiomas. Neuroradiology. 2019;61:1355–1364.
Ko CC, Zhang Y, Chen JH, et al. Pre‐operative MRI radiomics for the prediction of progression and recurrence in meningiomas. Front Neurol. 2021;12:636235.
Sun K, Zhang J, Liu Z, et al. A deep learning radiomics analysis for identifying sinus invasion in patients with meningioma before operation using tumor and peritumoral regions. Eur J Radiol. 2022;149:110187.
Wang L, Cao Y, Zhang G, et al. A radiomics model enables prediction of venous sinus invasion in meningioma. Ann Clin Transl Neurol. 2023;10:1284–1295.
Zhang J, Sun J, Han T, et al. Radiomic features of magnetic resonance images as novel preoperative predictive factors of bone invasion in meningiomas. Eur J Radiol. 2020;132:109287.
Lohmann P, Meißner AK, Kocher M, et al. Feature‐based PET/MRI radiomics in patients with brain tumors. Neurooncol Adv. 2021;2(Suppl 4):iv15–iv21.
Iglseder S, Iglseder A, Beliveau V, et al. Somatostatin receptor subtype expression and radiomics from DWI‐MRI represent SUV of [68Ga]Ga‐DOTATOC PET in patients with meningioma. J Neurooncol. 2023;164:711–720.
فهرسة مساهمة: Keywords: arterial spin labeling; machine learning; magnetic resonance imaging; meningioma
تواريخ الأحداث: Date Created: 20240807 Latest Revision: 20240807
رمز التحديث: 20240808
DOI: 10.1111/jon.13227
PMID: 39113129
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-6569
DOI:10.1111/jon.13227