دورية أكاديمية

Bright New Resources for Syphilis Research: Genetically Encoded Fluorescent Tags for Treponema pallidum and Sf1Ep Cells.

التفاصيل البيبلوغرافية
العنوان: Bright New Resources for Syphilis Research: Genetically Encoded Fluorescent Tags for Treponema pallidum and Sf1Ep Cells.
المؤلفون: Grillová L; Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK., Romeis E; Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA., Lieberman NAP; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA., Tantalo LC; Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA., Xu LH; Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA., Molini B; Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA., Trejos AT; Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA.; Department of Global Health, University of Washington, Seattle, Washington, USA., Lacey G; Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK., Goulding D; Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK., Thomson NR; Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK.; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK., Greninger AL; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA.; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA., Giacani L; Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA.; Department of Global Health, University of Washington, Seattle, Washington, USA.
المصدر: Molecular microbiology [Mol Microbiol] 2024 Aug 08. Date of Electronic Publication: 2024 Aug 08.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Scientific Publications Country of Publication: England NLM ID: 8712028 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2958 (Electronic) Linking ISSN: 0950382X NLM ISO Abbreviation: Mol Microbiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, OX ; Boston, MA : Blackwell Scientific Publications, c1987-
مستخلص: The recently discovered methodologies to cultivate and genetically manipulate Treponema pallidum subsp. pallidum (T. pallidum) have significantly helped syphilis research, allowing the in vitro evaluation of antibiotic efficacy, performance of controlled studies to assess differential treponemal gene expression, and generation of loss-of-function mutants to evaluate the contribution of specific genetic loci to T. pallidum virulence. Building on this progress, we engineered the T. pallidum SS14 strain to express a red-shifted green fluorescent protein (GFP) and Sf1Ep cells to express mCherry and blue fluorescent protein (BFP) for enhanced visualization. These new resources improve microscopy- and cell sorting-based applications for T. pallidum, better capturing the physical interaction between the host and pathogen, among other possibilities. Continued efforts to develop and share new tools and resources are required to help our overall knowledge of T. pallidum biology and syphilis pathogenesis reach that of other bacterial pathogens, including spirochetes.
(© 2024 The Author(s). Molecular Microbiology published by John Wiley & Sons Ltd.)
التعليقات: Update of: bioRxiv. 2024 May 29:2024.05.29.596454. doi: 10.1101/2024.05.29.596454. (PMID: 38854070)
References: Bolger, A. M., M. Lohse, and B. Usadel. 2014. “Trimmomatic: A Flexible Trimmer for Illumina Sequence Data.” Bioinformatics 30, no. 15: 2114–2120.
Carroll, J. A., P. E. Stewart, P. Rosa, A. F. Elias, and C. F. Garon. 2003. “An Enhanced GFP Reporter System to Monitor Gene Expression in Borrelia burgdorferi.” Microbiology (Reading) 149, no. Pt 7: 1819–1828.
Dahlberg, P. D., and W. E. Moerner. 2021. “Cryogenic Super‐Resolution Fluorescence and Electron Microscopy Correlated at the Nanoscale.” Annual Review of Physical Chemistry 72: 253–278.
De Lay, B. D., T. A. Cameron, N. R. De Lay, S. J. Norris, and D. G. Edmondson. 2021. “Comparison of Transcriptional Profiles of Treponema pallidum During Experimental Infection of Rabbits and In Vitro Culture: Highly Similar, Yet Different.” PLoS Pathogens 17, no. 9: e1009949.
Deka, R. K., M. Machius, M. V. Norgard, and D. R. Tomchick. 2002. “Crystal Structure of the 47‐kDa Lipoprotein of Treponema pallidum Reveals a Novel Penicillin‐Binding Protein.” Journal of Biological Chemistry 277, no. 44: 41857–41864.
Edmondson, D. G., B. Hu, and S. J. Norris. 2018. “Long‐Term In Vitro Culture of the Syphilis Spirochete Treponema pallidum subsp. pallidum.” mBio 9, no. 3: e01153‐18.
Edmondson, D. G., G. P. Wormser, and S. J. Norris. 2020. “In Vitro Susceptibility of Treponema pallidum subsp. pallidum to Doxycycline.” Antimicrobial Agents and Chemotherapy 64, no. 10: e00979‐20.
Gautam, A., M. Hathaway, N. McClain, G. Ramesh, and R. Ramamoorthy. 2008. “Analysis of the Determinants of bba64 (P35) Gene Expression in Borrelia burgdorferi Using a gfp Reporter.” Microbiology (Reading) 154, no. Pt 1: 275–285.
Giacani, L., S. L. Brandt, W. Ke, et al. 2015. “Transcription of TP0126, Treponema pallidum Putative OmpW Homolog, is Regulated by the Length of a Homopolymeric Guanosine Repeat.” Infection and Immunity 83, no. 6: 2275–2289.
Giacani, L., B. Molini, C. Godornes, et al. 2007. “Quantitative Analysis of tpr Gene Expression in Treponema pallidum Isolates: Differences Among Isolates and Correlation With T‐Cell Responsiveness in Experimental Syphilis.” Infection and Immunity 75, no. 1: 104–112.
Hayes, K. A., J. M. Dressler, S. J. Norris, D. G. Edmondson, and B. L. Jutras. 2023. “A Large Screen Identifies Beta‐Lactam Antibiotics Which Can Be Repurposed to Target the Syphilis Agent.” NPJ Antimicrobials and Resistance 1, no. 1: 4.
Haynes, A. M., M. Fernandez, E. Romeis, et al. 2021b. “Transcriptional and Immunological Analysis of the Putative Outer Membrane Protein and Vaccine Candidate TprL of Treponema pallidum.” PLoS Neglected Tropical Diseases 15, no. 1: e0008812.
Haynes, A. M., L. Giacani, M. V. Mayans, et al. 2021a. “Efficacy of Linezolid on Treponema pallidum, the Syphilis Agent: A Preclinical Study.” eBioMedicine 65: 103281.
Kao, W. A., H. Pětrošová, R. Ebady, et al. 2017. “Identification of Tp0751 (Pallilysin) as a Treponema pallidum Vascular Adhesin by Heterologous Expression in the Lyme Disease Spirochete.” Scientific Reports 7, no. 1: 1538.
Kearse, M., R. Moir, A. Wilson, et al. 2012. “Geneious Basic: An Integrated and Extendable Desktop Software Platform for the Organization and Analysis of Sequence Data.” Bioinformatics 28, no. 12: 1647–1649.
Langmead, B., and S. L. Salzberg. 2012. “Fast Gapped‐Read Alignment With Bowtie 2.” Nature Methods 9, no. 4: 357–359.
Lieberman, N. A. P., M. J. Lin, H. Xie, et al. 2021. “Treponema pallidum Genome Sequencing From six Continents Reveals Variability in Vaccine Candidate Genes and Dominance of Nichols Clade Strains in Madagascar.” PLoS Neglected Tropical Diseases 15, no. 12: e0010063.
Lin, M. J., A. M. Haynes, A. Addetia, et al. 2021. “Longitudinal TprK Profiling of In Vivo and In Vitro‐Propagated Treponema pallidum subsp. pallidum Reveals Accumulation of Antigenic Variants in Absence of Immune Pressure.” PLoS Neglected Tropical Diseases 15, no. 9: e0009753.
Lukehart, S. A., and C. M. Marra. 2007. “Isolation and Laboratory Maintenance of Treponema pallidum.” Current Protocols in Microbiology: Chapter 12:Unit 12A.1.
Moriarty, T. J., M. U. Norman, P. Colarusso, T. Bankhead, P. Kubes, and G. Chaconas. 2008. “Real‐Time High Resolution 3D Imaging of the Lyme Disease Spirochete Adhering to and Escaping From the Vasculature of a Living Host.” PLoS Pathogens 4, no. 6: e1000090.
National Research Council. 2011. Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academic Press.
Nichols, H. J., and W. H. Hough. 1913. “Demonstration of Spirochaeta pallida in the Cerebrospinal Fluid.” Journal of the American Medical Association 60: 108–110.
Phan, A., E. Romeis, L. Tantalo, and L. Giacani. 2022. “In Vitro Transformation and Selection of Treponema pallidum subsp. pallidum.” Current Protocols 2, no. 8: e507.
Romeis, E., N. A. P. Lieberman, B. Molini, et al. 2023. “Treponema pallidum subsp. pallidum With an Artificially Impaired TprK Antigenic Variation System is Attenuated in the Rabbit Model of Syphilis.” PLoS Pathogens 19, no. 3: e1011259.
Romeis, E., L. Tantalo, N. Lieberman, Q. Phung, A. Greninger, and L. Giacani. 2021. “Genetic Engineering of Treponema pallidum subsp. pallidum, the Syphilis Spirochete.” PLoS Pathogens 17, no. 7: e1009612.
Strnad, M., J. Elsterová, J. Schrenková, et al. 2015. “Correlative Cryo‐Fluorescence and Cryo‐Scanning Electron Microscopy as a Straightforward Tool to Study Host‐Pathogen Interactions.” Scientific Reports 5: 18029.
Tantalo, L. C., N. A. P. Lieberman, C. Pérez‐Mañá, et al. 2023. “Antimicrobial Susceptibility of Treponema pallidum Subspecies pallidum: An In‐Vitro Study.” Lancet Microbe 4, no. 12: e994–e1004.
Weigel, L. M., M. E. Brandt, and M. V. Norgard. 1992. “Analysis of the N‐Terminal Region of the 47‐Kilodalton Integral Membrane Lipoprotein of Treponema pallidum.” Infection and Immunity 60, no. 4: 1568–1576.
Weigel, L. M., J. D. Radolf, and M. V. Norgard. 1994. “The 47‐kDa Major Lipoprotein Immunogen of Treponema pallidum is a Penicillin‐Binding Protein With Carboxypeptidase Activity.” Proceedings of the National Academy of Sciences of the United States of America 91, no. 24: 11611–11615.
معلومات مُعتمدة: 8394150 Open Philanthropy Project; U19AI144133 National Institute of Allergy and Infectious Diseases; BB/010589 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; 206194 United Kingdom WT_ Wellcome Trust; INV-051483 the Bill & Melinda Gates Foundation
فهرسة مساهمة: Keywords: GFP‐expressing Treponema pallidum subsp. pallidum; fluorescence microscopy; genetic manipulation; mCherry and BFP‐expressing Sf1Ep cells
تواريخ الأحداث: Date Created: 20240808 Latest Revision: 20240813
رمز التحديث: 20240813
DOI: 10.1111/mmi.15304
PMID: 39115038
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2958
DOI:10.1111/mmi.15304