دورية أكاديمية

Functional loss of ERBB receptor feedback inhibitor 1 (MIG6) promotes glioblastoma tumorigenesis by aberrant activation of epidermal growth factor receptor (EGFR).

التفاصيل البيبلوغرافية
العنوان: Functional loss of ERBB receptor feedback inhibitor 1 (MIG6) promotes glioblastoma tumorigenesis by aberrant activation of epidermal growth factor receptor (EGFR).
المؤلفون: Yi SA; Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, Korea., Cho D; Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea.; Department of Nanobiomedical Science, Dankook University, Cheonan, Korea., Kim S; Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea.; Department of Nanobiomedical Science, Dankook University, Cheonan, Korea., Kim H; Department of Nanobiomedical Science, Dankook University, Cheonan, Korea., Choi MK; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea., Choi HS; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea., Shin S; Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea.; Department of Nanobiomedical Science, Dankook University, Cheonan, Korea., Yun S; Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea.; Department of Nanobiomedical Science, Dankook University, Cheonan, Korea., Lim A; Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea.; Department of Nanobiomedical Science, Dankook University, Cheonan, Korea., Jeong JK; Department of Nanobiomedical Science, Dankook University, Cheonan, Korea., Yoon DE; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea.; Department of Physiology, Korea University College of Medicine, Seoul, Korea., Cha HJ; Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea., Kim K; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea.; Department of Physiology, Korea University College of Medicine, Seoul, Korea., Han JW; Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, Korea., Cho HS; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea., Cho J; Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea.; Department of Nanobiomedical Science, Dankook University, Cheonan, Korea.
المصدر: Molecular oncology [Mol Oncol] 2024 Aug 11. Date of Electronic Publication: 2024 Aug 11.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons, Inc Country of Publication: United States NLM ID: 101308230 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1878-0261 (Electronic) Linking ISSN: 15747891 NLM ISO Abbreviation: Mol Oncol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2017- : Hoboken, New Jersey : John Wiley & Sons, Inc.
Original Publication: Amsterdam : Elsevier
مستخلص: Dysregulation of epidermal growth factor receptor (EGFR) is one of the most common mechanisms associated with the pathogenesis of various cancers. Mitogen-inducible gene 6 [MIG6; also known as ERBB receptor feedback inhibitor 1 (ERRFI1)], identified as a feedback inhibitor of EGFR, negatively regulates EGFR by directly inhibiting its kinase activity and facilitating its internalization, subsequently leading to degradation. Despite its proposed role as an EGFR-dependent tumor suppressor, the functional consequences and clinical relevance in cancer etiology remain incompletely understood. Here, we identify that the stoichiometric balance between MIG6 and EGFR is crucial in promoting EGFR-dependent oncogenic growth in various experimental model systems. In addition, a subset of ERRFI1 (the official gene symbol of MIG6) mutations exhibit impaired ability to suppress the enzymatic activation of EGFR at multiple levels. In summary, our data suggest that decreased or loss of MIG6 activity can lead to abnormal activation of EGFR, potentially contributing to cellular transformation. We propose that the mutation status of ERRFI1 and the expression levels of MIG6 can serve as additional biomarkers for guiding EGFR-targeted cancer therapies, including glioblastoma.
(© 2024 The Author(s). Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.)
References: An Z, Aksoy O, Zheng T, Fan QW, Weiss WA. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene. 2018;37:1561–1575. https://doi.org/10.1038/s41388‐017‐0045‐7.
Lee JC, Vivanco I, Beroukhim R, Huang JH, Feng WL, DeBiasi RM, et al. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain. PLoS Med. 2006;3:e485. https://doi.org/10.1371/journal.pmed.0030485.
Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7:169–181. https://doi.org/10.1038/nrc2088.
Spano JP, Fagard R, Soria JC, Rixe O, Khayat D, Milano G. Epidermal growth factor receptor signaling in colorectal cancer: preclinical data and therapeutic perspectives. Ann Oncol. 2005;16:189–194. https://doi.org/10.1093/annonc/mdi057.
Cho J. Mechanistic insights into differential requirement of receptor dimerization for oncogenic activation of mutant EGFR and its clinical perspective. BMB Rep. 2020;53:133–141. https://doi.org/10.5483/BMBRep.2020.53.3.025.
Greulich H, Chen TH, Feng W, Janne PA, Alvarez JV, Zappaterra M, et al. Oncogenic transformation by inhibitor‐sensitive and ‐resistant EGFR mutants. PLoS Med. 2005;2:e313. https://doi.org/10.1371/journal.pmed.0020313.
Hu C, Leche CA 2nd, Kiyatkin A, Yu Z, Stayrook SE, Ferguson KM, et al. Glioblastoma mutations alter EGFR dimer structure to prevent ligand bias. Nature. 2022;602:518–522. https://doi.org/10.1038/s41586‐021‐04393‐3.
Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–1500. https://doi.org/10.1126/science.1099314.
Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A. 2004;101:13306–13311. https://doi.org/10.1073/pnas.0405220101.
Cho J, Chen L, Sangji N, Okabe T, Yonesaka K, Francis JM, et al. Cetuximab response of lung cancer‐derived EGF receptor mutants is associated with asymmetric dimerization. Cancer Res. 2013;73:6770–6779. https://doi.org/10.1158/0008‐5472.CAN‐13‐1145.
Jonker DJ, O'Callaghan CJ, Karapetis CS, Zalcberg JR, Tu D, Au HJ, et al. Cetuximab for the treatment of colorectal cancer. N Engl J Med. 2007;357:2040–2048. https://doi.org/10.1056/NEJMoa071834.
Ladanyi M, Pao W. Lung adenocarcinoma: guiding EGFR‐targeted therapy and beyond. Mod Pathol. 2008;21(Suppl 2):S16–S22. https://doi.org/10.1038/modpathol.3801018.
Rehmani HS, Issaeva N. EGFR in head and neck squamous cell carcinoma: exploring possibilities of novel drug combinations. Ann Transl Med. 2020;8:813. https://doi.org/10.21037/atm.2020.04.07.
Vyse S, Huang PH. Targeting EGFR exon 20 insertion mutations in non‐small cell lung cancer. Signal Transduct Target Ther. 2019;4:5. https://doi.org/10.1038/s41392‐019‐0038‐9.
Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5:22. https://doi.org/10.1038/s41392‐020‐0116‐z.
Cairns J, Fridley BL, Jenkins GD, Zhuang Y, Yu J, Wang L. Differential roles of ERRFI1 in EGFR and AKT pathway regulation affect cancer proliferation. EMBO Rep. 2018;19:e44767. https://doi.org/10.15252/embr.201744767.
Frosi Y, Anastasi S, Ballaro C, Varsano G, Castellani L, Maspero E, et al. A two‐tiered mechanism of EGFR inhibition by RALT/MIG6 via kinase suppression and receptor degradation. J Cell Biol. 2010;189:557–571. https://doi.org/10.1083/jcb.201002032.
Hackel PO, Gishizky M, Ullrich A. Mig‐6 is a negative regulator of the epidermal growth factor receptor signal. Biol Chem. 2001;382:1649–1662. https://doi.org/10.1515/BC.2001.200.
Park E, Kim N, Ficarro SB, Zhang Y, Lee BI, Cho A, et al. Structure and mechanism of activity‐based inhibition of the EGF receptor by Mig6. Nat Struct Mol Biol. 2015;22:703–711. https://doi.org/10.1038/nsmb.3074.
Reschke M, Ferby I, Stepniak E, Seitzer N, Horst D, Wagner EF, et al. Mitogen‐inducible gene‐6 is a negative regulator of epidermal growth factor receptor signaling in hepatocytes and human hepatocellular carcinoma. Hepatology. 2010;51:1383–1390. https://doi.org/10.1002/hep.23428.
Ying H, Zheng H, Scott K, Wiedemeyer R, Yan H, Lim C, et al. Mig‐6 controls EGFR trafficking and suppresses gliomagenesis. Proc Natl Acad Sci U S A. 2010;107:6912–6917. https://doi.org/10.1073/pnas.0914930107.
Zhang X, Pickin KA, Bose R, Jura N, Cole PA, Kuriyan J. Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface. Nature. 2007;450:741–744. https://doi.org/10.1038/nature05998.
Ferby I, Reschke M, Kudlacek O, Knyazev P, Pante G, Amann K, et al. Mig6 is a negative regulator of EGF receptor‐mediated skin morphogenesis and tumor formation. Nat Med. 2006;12:568–573. https://doi.org/10.1038/nm1401.
Maity TK, Venugopalan A, Linnoila I, Cultraro CM, Giannakou A, Nemati R, et al. Loss of MIG6 accelerates initiation and progression of mutant epidermal growth factor receptor‐driven lung adenocarcinoma. Cancer Discov. 2015;5:534–549. https://doi.org/10.1158/2159‐8290.CD‐14‐0750.
Cui Y, Kang Y, Zhang P, Wang Y, Yang Z, Lu C, et al. Mig‐6 could inhibit cell proliferation and induce apoptosis in esophageal squamous cell carcinoma. Thorac Cancer. 2022;13:54–60. https://doi.org/10.1111/1759‐7714.14223.
Jeong O, Broaddus RR, Lessey BA, Risinger JI, Hunter MI, Kim TH. MIG‐6 is critical for progesterone responsiveness in human complex atypical hyperplasia and early‐stage endometrial cancer. Int J Mol Sci. 2022;23:14596. https://doi.org/10.3390/ijms232314596.
Meseure D, Drak Alsibai K, Vacher S, Hatem R, Nicolas A, Callens C, et al. Altered expression of three EGFR posttranslational regulators MDGI, MIG6, and EIG121 in invasive breast carcinomas. Anal Cell Pathol (Amst). 2020;2020:9268236. https://doi.org/10.1155/2020/9268236.
Yoo JY, Kim TH, Shin JH, Marquardt RM, Muller U, Fazleabas AT, et al. Loss of MIG‐6 results in endometrial progesterone resistance via ERBB2. Nat Commun. 2022;13:1101. https://doi.org/10.1038/s41467‐022‐28608‐x.
Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47:D941–D947. https://doi.org/10.1093/nar/gky1015.
Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44:e71. https://doi.org/10.1093/nar/gkv1507.
Cho J, Pastorino S, Zeng Q, Xu X, Johnson W, Vandenberg S, et al. Glioblastoma‐derived epidermal growth factor receptor carboxyl‐terminal deletion mutants are transforming and are sensitive to EGFR‐directed therapies. Cancer Res. 2011;71:7587–7596. https://doi.org/10.1158/0008‐5472.CAN‐11‐0821.
Park AK, Francis JM, Park WY, Park JO, Cho J. Constitutive asymmetric dimerization drives oncogenic activation of epidermal growth factor receptor carboxyl‐terminal deletion mutants. Oncotarget. 2015;6:8839–8850. https://doi.org/10.18632/oncotarget.3559.
Jiang J, Greulich H, Janne PA, Sellers WR, Meyerson M, Griffin JD. Epidermal growth factor‐independent transformation of Ba/F3 cells with cancer‐derived epidermal growth factor receptor mutants induces gefitinib‐sensitive cell cycle progression. Cancer Res. 2005;65:8968–8974. https://doi.org/10.1158/0008‐5472.CAN‐05‐1829.
Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G, et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high‐content screen. Cell. 2006;124:1283–1298. https://doi.org/10.1016/j.cell.2006.01.040.
Yi SA, Nam KH, Yun J, Gim D, Joe D, Kim YH, et al. Infection of brain organoids and 2D cortical neurons with SARS‐CoV‐2 Pseudovirus. Viruses. 2020;12:1004. https://doi.org/10.3390/v12091004.
Zhang YW, Staal B, Su Y, Swiatek P, Zhao P, Cao B, et al. Evidence that MIG‐6 is a tumor‐suppressor gene. Oncogene. 2007;26:269–276. https://doi.org/10.1038/sj.onc.1209790.
Malden LT, Novak U, Kaye AH, Burgess AW. Selective amplification of the cytoplasmic domain of the epidermal growth factor receptor gene in glioblastoma multiforme. Cancer Res. 1988;48:2711–2714.
Schwechheimer K, Huang S, Cavenee WK. EGFR gene amplification—rearrangement in human glioblastomas. Int J Cancer. 1995;62:145–148. https://doi.org/10.1002/ijc.2910620206.
Ghandi M, Huang FW, Jane‐Valbuena J, Kryukov GV, Lo CC, McDonald ER 3rd, et al. Next‐generation characterization of the cancer cell line encyclopedia. Nature. 2019;569:503–508. https://doi.org/10.1038/s41586‐019‐1186‐3.
Fiorentino L, Pertica C, Fiorini M, Talora C, Crescenzi M, Castellani L, et al. Inhibition of ErbB‐2 mitogenic and transforming activity by RALT, a mitogen‐induced signal transducer which binds to the ErbB‐2 kinase domain. Mol Cell Biol. 2000;20:7735–7750. https://doi.org/10.1128/MCB.20.20.7735‐7750.2000.
Rybin MJ, Ivan ME, Ayad NG, Zeier Z. Organoid models of glioblastoma and their role in drug discovery. Front Cell Neurosci. 2021;15:605255. https://doi.org/10.3389/fncel.2021.605255.
Linkous A, Balamatsias D, Snuderl M, Edwards L, Miyaguchi K, Milner T, et al. Modeling patient‐derived glioblastoma with cerebral organoids. Cell Rep. 2019;26:3203–3211.e5. https://doi.org/10.1016/j.celrep.2019.02.063.
Kadoshima T, Sakaguchi H, Nakano T, Soen M, Ando S, Eiraku M, et al. Self‐organization of axial polarity, inside‐out layer pattern, and species‐specific progenitor dynamics in human ES cell‐derived neocortex. Proc Natl Acad Sci U S A. 2013;110:20284–20289. https://doi.org/10.1073/pnas.1315710110.
Descot A, Hoffmann R, Shaposhnikov D, Reschke M, Ullrich A, Posern G. Negative regulation of the EGFR‐MAPK cascade by actin‐MAL‐mediated Mig6/Errfi‐1 induction. Mol Cell. 2009;35:291–304. https://doi.org/10.1016/j.molcel.2009.07.015.
Shan Y, Eastwood MP, Zhang X, Kim ET, Arkhipov A, Dror RO, et al. Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization. Cell. 2012;149:860–870. https://doi.org/10.1016/j.cell.2012.02.063.
Jiang Q, Zhang D, Liu J, Liang C, Yang R, Zhang C, et al. HPIP is an essential scaffolding protein running through the EGFR‐RAS‐ERK pathway and drives tumorigenesis. Sci Adv. 2023;9:eade1155. https://doi.org/10.1126/sciadv.ade1155.
Li L, Zhou A, Wei Y, Liu F, Li P, Fang R, et al. Critical role of lncEPAT in coupling dysregulated EGFR pathway and histone H2A deubiquitination during glioblastoma tumorigenesis. Sci Adv. 2022;8:eabn2571. https://doi.org/10.1126/sciadv.abn2571.
Okuda K, Umemura A, Umemura S, Kataoka S, Taketani H, Seko Y, et al. Honokiol prevents non‐alcoholic steatohepatitis‐induced liver cancer via EGFR degradation through the glucocorticoid receptor‐MIG6 Axis. Cancers (Basel). 2021;13:1515. https://doi.org/10.3390/cancers13071515.
Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol. 2018;12:3–20. https://doi.org/10.1002/1878‐0261.12155.
Wang D, Ruan W, Fan L, Xu H, Song Q, Diao H, et al. Hypermethylation of Mig‐6 gene promoter region inactivates its function, leading to EGFR/ERK signaling hyperphosphorylation, and is involved in arsenite‐induced hepatic stellate cells activation and extracellular matrix deposition. J Hazard Mater. 2022;439:129577. https://doi.org/10.1016/j.jhazmat.2022.129577.
Chang X, Izumchenko E, Solis LM, Kim MS, Chatterjee A, Ling S, et al. The relative expression of Mig6 and EGFR is associated with resistance to EGFR kinase inhibitors. PLoS ONE. 2013;8:e68966. https://doi.org/10.1371/journal.pone.0068966.
Kang DH, Jung SS, Yeo MK, Lee DH, Yoo G, Cho SY, et al. Suppression of Mig‐6 overcomes the acquired EGFR‐TKI resistance of lung adenocarcinoma. BMC Cancer. 2020;20:571. https://doi.org/10.1186/s12885‐020‐07057‐z.
Li ZX, Qu LY, Wen H, Zhong HS, Xu K, Qiu XS, et al. Mig‐6 overcomes gefitinib resistance by inhibiting EGFR/ERK pathway in non‐small cell lung cancer cell lines. Int J Clin Exp Pathol. 2014;7:7304–7311.
Linkous A, Fine HA. Generating patient‐derived gliomas within cerebral organoids. STAR Protoc. 2020;1:100008. https://doi.org/10.1016/j.xpro.2019.100008.
معلومات مُعتمدة: 2019M3E5D6063903 National Research Foundation of Korea; 2021R1A2C3010506 National Research Foundation of Korea; 2017R1A2B3002186 National Research Foundation of Korea; 2019R1A5A2027340 National Research Foundation of Korea; 2016R1A2B2011100 National Research Foundation of Korea; 2019R1A4A1028268 National Research Foundation of Korea; 2017R1A6A3A04001986 National Research Foundation of Korea
فهرسة مساهمة: Keywords: EGFR; MIG6; biomarker; glioblastoma (GBM); targeted cancer therapy
تواريخ الأحداث: Date Created: 20240812 Latest Revision: 20240812
رمز التحديث: 20240813
DOI: 10.1002/1878-0261.13717
PMID: 39129344
قاعدة البيانات: MEDLINE
الوصف
تدمد:1878-0261
DOI:10.1002/1878-0261.13717