دورية أكاديمية

Exploring allelochemicals for cleaner and sustainable agriculture: A bibliometric review on research trends, challenges and future prospective.

التفاصيل البيبلوغرافية
العنوان: Exploring allelochemicals for cleaner and sustainable agriculture: A bibliometric review on research trends, challenges and future prospective.
المؤلفون: Bamal D; Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India., Duhan A; Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India., Beniwal RK; Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India.; Department of Genetics and Plant Breeding, Medicinal, Aromatic and Potential Crops Section, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India., Sindhu J; Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India., Kumawat P; Department of Agronomy, Sri Karan Narendra Agriculture University, Jobner, Jaipur, India., Pal A; Department of Biochemistry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India., Dhanda S; Department of Agronomy, Kansas State University, Manhattan, KS, USA., Goyat A; Department of Agricultural Sciences, University of Hohenheim, Stuttgart, Germany., Hooda VS; Department of Agronomy, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India., Rajpaul; Department of Soil Science, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India.
المصدر: Physiologia plantarum [Physiol Plant] 2024 Jul-Aug; Vol. 176 (4), pp. e14472.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Scandinavian Society For Plant Physiology Country of Publication: Denmark NLM ID: 1256322 Publication Model: Print Cited Medium: Internet ISSN: 1399-3054 (Electronic) Linking ISSN: 00319317 NLM ISO Abbreviation: Physiol Plant Subsets: MEDLINE
أسماء مطبوعة: Publication: Copenhagen : Scandinavian Society For Plant Physiology
Original Publication: Lund, Sweden [etc.]
مواضيع طبية MeSH: Bibliometrics* , Agriculture*/methods , Pheromones* , Allelopathy*, Crops, Agricultural
مستخلص: Allelopathic research is not getting the intended consideration because of the complexities involved in their isolation, identification, understanding their modes of action, interactions with other environmental factors, impacts on non-target organisms and exploration of their utility in diverse fields. Additionally, their variability and trace availability have presented hurdles in establishing future research utilities and their field applications. Exploring the historical context of allelopathic research is essential for obtaining a more profound understanding of the progression in this research domain and to identify the research gaps and potential future prospectives. Therefore, the current bibliometric review aims to examine the research advancements, trends, hotspots, research gaps and to identify future prospectives in allelopathic research. A Scopus database search was carried out to collect the bibliometric data using the combination of multiple search strings in advance search option. The outcomes of this study revealed a total of 5427 published articles, with an average of 19.12 citations per article. Despite the increasing trend in research and publications on allelopathy/allelochemicals over the last decade, the majority of allelopathic research remains focused on investigating novel allelochemicals and their potential for weed management. Other crucial considerations like their phytotoxicity and ecotoxicity, selectivity for crop growth, interactions with herbicides and their derivatives, biochemical signalling, identification of germplasm in allelopathic plants, inducing allelopathic trait into enhanced cultivars, their ultimate fate in the open environment are sparsely investigated. It is anticipated that this review will draw greater attention to some overlooked domains within allelopathic research.
(© 2024 Scandinavian Plant Physiology Society.)
References: Abbas, T., Nadeem, M.A., Tanveer, A., Ali, H.H., Farooq, N. (2018) Role of allelopathic crop mulches and reduced doses of tank‐mixed herbicides in managing herbicide‐resistant Phalaris minor in wheat. Crop Prot, 110, 245–250. https://doi.org/10.1016/j.cropro.2017.06.012.
Algandaby, M.M., El‐Darier, S.M. (2018) Management of the noxious weed; Medicago polymorpha L. via allelopathy of some medicinal plants from Taif region Saudi Arabia. Saudi J Biol Sci, 25(7), 1339–1347. https://doi.org/10.1016/j.sjbs.2016.02.013.
Alsharekh, A., El‐Sheikh, M.A., Alatar, A.A., Abdel‐Salam, E.M. (2022) Natural control of weed invasions in hyper‐arid arable farms: Allelopathic potential effect of Conocarpus erectus against common weeds and vegetables. Agronomy, 12(3), 703. https://doi.org/10.3390/agronomy12030703.
Anwar, S., Naseem, S., Karimi, S., Asi, M.R., Ali, Z. (2021) Bioherbicidal activity and metabolic profiling of potent allelopathic plant fractions against major weeds of wheat—Way forward to lower the risk of synthetic herbicides. Front Plant Sci, 12, 632390. https://doi.org/10.3389/fpls.2021.632390.
Asaduzzaman, M., Asao, T. (2012) Autotoxicity in beans and their allelochemicals. Sci Hortic, 134, 26–31. https://doi.org/10.1016/j.scienta.2011.11.035.
Asao, T., Hasegawa, K., Sueda, Y., Tomita, K., Taniguchi, K., Hosoki, T., Pramanik, M.H.R., Matsui, Y. (2003) Autotoxicity of root exudates from taro. Sci Hortic, 97(3–4), 389–396. https://doi.org/10.1016/S0304-4238(02)00197-8.
Bajwa, A.A. (2014) Sustainable weed management in conservation agriculture. Crop Prot, 65, 105–113. https://doi.org/10.1016/j.cropro.2014.07.014.
Bashar, H.K., Juraimi, A.S., Ahmad‐Hamdani, M.S., Uddin, M.K., Asib, N., Anwar, M.P., Hossain, A. (2023) Evaluation of allelopathic effects of Parthenium hysterophorus L. methanolic extracts on some selected plants and weeds. Plos one, 18(1), e0280159. https://doi.org/10.1371/journal.pone.0280159.
Batish, D.R., Singh, H.P., Kohli, R.K., Kaur, S. (2001) Crop allelopathy and its role in ecological agriculture. J Crop Prod, 4(2), 121–161. https://doi.org/10.1300/J144v04n02_03.
Calle, M.E., Cabrera, G., Cantero, D., Valle, A., Bolivar, J. (2019) A genetically engineered Escherichia coli strain overexpressing the nitroreductase NfsB is capable of producing the herbicide D‐DIBOA with 100% molar yield. Microb Cell Fact, 18, 86. https://doi.org/10.1186/s12934-019-1135-8.
Chaimovitsh, D., Shachter, A., Abu‐Abied, M., Rubin, B., Sadot, E., Dudai, N. (2017) Herbicidal activity of monoterpenes is associated with disruption of microtubule functionality and membrane integrity. Weed Sci, 65(1), 19–30. https://doi.org/10.1614/WS-D-16-00044.1.
Chon, S.U., Kim, J.D. (2002) Biological activity and quantification of suspected allelochemicals from alfalfa plant parts. J Agron Crop Sci, 188, 281–285. https://doi.org/10.1046/j.1439-037X.2002.00574.x.
Chon, S.U., Kim, Y.M. (2004) Herbicidal potential and quantification of suspected allelochemicals from four grass crop extracts. J Agron Crop Sci, 190, 145–150. https://doi.org/10.1111/j.1439-037X.2004.00088.x.
Dayan, F.E., Rimando, A.M., Pan, Z., Baerson, S.R., Gimsing, A.L., Duke, S.O. (2010) Sorgoleone. Phytochemistry, 71(10), 1032–1039. https://doi.org/10.1016/j.phytochem.2010.03.011.
Ding, J., Sun, Y., Xiao, C.L., Shi, K., Zhou, Y.H., Yu, J.Q. (2007) Physiological basis of different allelopathic reactions of cucumber and fig leaf gourd plants to cinnamic acid. J Exp Bot, 58(13), 3765–3773. https://doi.org/10.1093/jxb/erm227.
Dordevic, T., Durovic‐Pejcev, R., Stevanovic, M., Saric‐Krsmanovic, M., Radivojevic, L., Santric, L., Gajic‐Umiljendic, J. (2022) Phytotoxicity and allelopathic potential of Juglans regia L. leaf extract. Front Plant Sci, 13, 986740. https://doi.org/10.3389/fpls.2022.986740.
Duke, S.O. (2010) Allelopathy: current status of research and future of the discipline: Commentary. Allelopath J, 25, 17–30. https://pubag.nal.usda.gov/catalog/55154.
Duke, S.O., Scheffler, B.E., Boyette, C.D., Dayan, F.E. (2015) Biotechnology in weed control. Kirk‐Othmer Encyclopedia of Chemical Technology. https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=Duke%2C+S.O.%2C+Scheffler%2C+B.E.%2C+Boyette%2C+C.D.%2C+Dayan%2C+F.E.%2C+2015.+Biotechnology+in+weed+control.+&btnG=.
Farooq, M., Khan, I., Nawaz, A., Cheema, M.A., Siddique, K.H. (2020) Using sorghum to suppress weeds in autumn planted maize. Crop Prot, 133, 105162. https://doi.org/10.1016/j.cropro.2020.105162.
Farooq, M., Nawaz, A., Ahmad, E., Nadeem, F., Hussain, M., Siddique, K.H.M. (2017) Using Sorghum to suppress weeds in dry seeded aerobic and puddled transplanted rice. Field Crops Res, 214, 211–218. https://doi.org/10.1016/j.fcr.2017.09.017.
Fayed, E.M., Abd‐EIGawad, A.M., Elshamy, A.I., El‐Halawany, E.F., EI‐Amier, Y.A. (2021) Essential Oil of Deverra tortuosa aerial parts: Detailed chemical profile, allelopathic, antimicrobial, and antioxidant activities. Chem Biodiversity, 18(4). https://doi.org/10.1002/cbdv.202000914.
Fernandez, C., Voiriot, S., Mevy, J.P., Vila, B., Ormeno, E., Dupouyet, S., Bousquet‐Melou, A. (2008) Regeneration failure of Pinus halepensis Mill.: The role of autotoxicity and some abiotic environmental parameters. Ecol Manag, 255(7), 2928–2936. https://doi.org/10.1016/j.foreco.2008.01.072.
Fragasso, M., Iannucci, A., Papa, R. (2013). Durum wheat and allelopathy: toward wheat breeding for natural weed management. Front Plant Sci, 4(375), 1–8. https://doi.org/10.3389/fpls.2013.00375.
Gawad, A.M., Elshamy, A.I., El‐Nasser, Gendy, A., Al‐Rowaily, S.L., Assaeed, A.M. (2019) Preponderance of oxygenated sesquiterpenes and diterpenes in the volatile oil constituents of Lactuca serriola L. revealed antioxidant and allelopathic activity. Chem Biodivers, 16(8), e1900278. https://doi.org/10.1002/cbdv.201900278.
Gharde, Y., Singh, P.K., Dubey, R.P., Gupta, P.K. (2018) Assessment of yield and economic losses in agriculture due to weeds in India. Crop Prot, 107, 12–18. https://doi.org/10.1016/j.cropro.2018.01.007.
Ghimire, B.K., Ghimire, B., Yu, C.Y., Chung, I. (2019) Allelopathic and autotoxic effects of Medicago sativa ‐ derived allelochemicals. Plants, 8(7), 233. https://doi.org/10.3390/plants8070233.
Hao, Z.P., Wang, Q., Christie, P., Li, X.L. (2007) Allelopathic potential of watermelon tissues and root exudates. Sci Hortic, 112(3), 315–320. https://doi.org/10.1016/j.scienta.2006.12.030.
Heirro, J.L., Callaway, R.M. (2021). The ecological importance of allelopathy. Annu Rev Ecol Evol Syst, 52, 25–45. https://doi.org/10.1146/annurev-ecolsys-051120-030619.
Inderjit, Duke, S.O. (2003) Eco‐physiological aspects of allelopathy. Planta, 217, 529–539. https://doi.org/10.1007/s00425-003-1054-z.
INRA, (2020). Cortext Manager. https://www.cortext.net/projects/cortext-manager/.
Kato‐Noguchi, H., Matsumoto, K., Sakamoto, C., Tojo, S., Teruya, T. (2023) Allelopathy and allelopathic substances in the leaves of Metasequoia glyptostroboides from pruned branches for weed management. Agronomy, 13(4), 1017. https://doi.org/10.3390/agronomy13041017.
Khalid, S., Ahmad, T., Shad, R.A. (2002). Use of allelopathy in agriculture. Asian J Plant Sci, 1(3), 292–297. https://www.researchgate.net/profile/Shahida-Khalid/publication/26554975_Use_of_Allelopathy_in_Agriculture/links/55e9ad5508ae3e121843bd39/Use-of-Allelopathy-in-Agriculture.pdf.
Khamare, Y., Chen, J., Marble, S.C. (2022) Allelopathy and its application as a weed management tool: A review. Front Plant Sci, 13, 1034649. https://doi.org/10.3389/fpls.2022.1034649.
Li, Z.R., Amist, N., Bai, L.Y. (2019) Allelopathy in sustainable weeds management. Allelopath J, 48, 109–138. https://doi.org/10.26651/allelo.j/2019-48-2-1249.
Macias, F.A., Mejias, F.J.R., Molinillo, J.M.G. (2019) Recent advances in allelopathy for weed control: From knowledge to applications. Pest Manag Sci, 75, 2413–2436. https://doi.org/10.1002/ps.5355.
Mousavi, S.S., Karami, A., Haghighi, T.M., Alizadeh, S., Maggi, F. (2021) Phytotoxic potential and phenolic profile of extracts from Scrophularia striata. Plants, 14. https://doi.org/10.3390/plants10010135.
Nakano, H., Morita, S., Shigemori, H., Hasegawa, K. (2006) Plant growth inhibitory compounds from aqueous leachate of wheat straw. Plant Growth Reg, 48, 215–219. https://doi.org/10.1007/s10725-006-0006-6.
Quan, N.V., Xuan, T.D., Tran, H.D., Thuy, N.T.D. (2019) Inhibitory activities of momilactones A, B, E, and 7‐ketostigmasterol isolated from rice husk on paddy and invasive weeds. Plants, 8(6), 159. https://doi.org/10.3390/plants8060159.
Ramezani, S., Saharkhiz, M.J., Ramezani, F., Fotokian, M.H. (2008) Use of essential oils as bioherbicides. J Essent Oil‐Bear Plants, 11(3), 319–327. https://doi.org/10.1080/0972060X.2008.10643636.
Razavi, S.M. (2011) Plant coumarins as allelopathic agents. Int J Biol Chem, 5(1), 86–90. https://doi.org/10.3923/ijbc.2011.86.90.
Reigosa, M.J., Souto, X.C., Gonzalez, L. (1999) Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regul, 28, 83–88. https://doi.org/10.1023/A:1006269716762.
Scavo, A., Mauromicale, G. (2021) Crop allelopathy for sustainable weed management in agroecosystems: Knowing the present with a view to the future. Agronomy, 11(11), 2104. https://doi.org/10.3390/agronomy11112104.
Scavo, A., Pandino, G., Restuccia, A., Caruso, P., Lombardo, S., Mauromicale, G. (2022). Allelopathy in durum wheat landraces as affected by genotype and plant part. Plants, 11, 1021. https://doi.org/10.3390/plants11081021.
Scavo, A., Restuccia, A., Mauromicale, G. (2018) Allelopathy: General principles and basic aspects for agroecosystem control. Sustain Agric Rev, 28, 47–101. https://doi.org/10.1007/978-3-319-90309-5_2.
Scavo, A., Restuccia, A., Abbate, C., Mauromicale, G. (2019a) Seeming field allelopathic activity of Cynara cardunculus L. reduces the soil weed seed bank. Agron Sustain Develop, 39(41). https://doi.org/10.1007/s13593-019-0580-4.
Scavo, A., Rial, C., Molinillo, J.M.G., Varela, R.M., Mauromicale, G., Macias, F.A. (2019b) The extraction procedure improves the allelopathic activity of cardoon (Cynara cardunculus var. altilis) leaf allelochemicals. Ind Crop Prod, 128, 479–487. https://doi.org/10.1016/j.indcrop.2018.11.053.
Scavo, A., Rial, C., Varela, R.M., Molinillo, J.M.G., Mauromicale, G., Macias, F.A. (2019c) Influence of genotype and harvest time on the Cynara cardunculus L. sesquiterpene lactone profile. J Agric Food Chem, 67(23), 6487–6496. https://doi.org/10.1021/acs.jafc.9b02313.
Schulz, M., Marocco, A., Tabaglio, V. (2012) BOA detoxification of four summer weeds during germination and seedling growth. J Chem Ecol, 38, 933–946. https://doi.org/10.1007/s10886-012-0136-4.
Shehzad, T., Okuno, K. (2020) Genetic analysis of QTLs controlling allelopathic characteristics in sorghum. PLoS ONE, 15(7), e0235896. https://doi.org/10.1371/journal.pone.0235896.
Shen, S., Ma, G., Xu, G., Li, D., Jin, G., Yang, S., Ye, M. (2022) Allelochemicals identified from sweet potato (Ipomoea batatas) and their allelopathic effects on invasive alien plants. Front Plant Sci, 13, 823947. https://doi.org/10.3389/fpls.2022.823947.
Shrestha, S., Sharma, G., Burgos, N.R., Tseng, T.M. (2020) Competitive ability of weedy rice: toward breeding weed‐suppressive rice cultivars. J Crop Improvement, 455‐469. https://doi.org/10.1080/15427528.2020.1733158.
Soltys, D., Krasuska, U., Bogatek, R., Gniazdowska, A. (2013) Allelochemicals as bioherbicides—present and perspectives. In: Herbicides ‐ current research and case studies in use. InTech, 517–542. https://doi.org/10.5772/56185.
Stanisic, M., Cosic, T., Savic, J., Krstic‐Milosevic, D., Misic, D., Smigocki, A., Ninkovic, S., Banjac, N. (2019) Hairy root culture as a valuable tool for allelopathic studies in apple. Tree Physiol, 39, 888–905. https://doi.org/10.1093/treephys/tpz006.
Stochmal, A., Kus, J., Martyniuk, S., Oleszek, W. (2006) Concentration of benzoxazinoids in roots of field‐grown wheat (Triticum aestivum L.) varieties. J Agric Food Chem, 54, 1016–1022. https://doi.org/10.1021/jf050899+.
Turk, M.A., Tawaha, A.M. (2003) Allelopathic effect of black mustard (Brassica nigra L.) on germination and growth of wild oat (Avena fatua L.). Crop Prot, 22(4), 673–677. https://doi.org/10.1016/S0261-2194(02)00241-7.
Vieites‐Alvarez, Y., Otero, P., Prieto, M.A., Simal‐Gandara, J., Reigosa, M.J., Sanchez‐Moreiras, A. M., Hussain, M.I. (2023) Testing the role of allelochemicals in different wheat cultivars to sustainably manage weeds. Pest Manag Sci, 79(7), 2625–2638. https://doi.org/10.1002/ps.7444.
Wu, H., Pratley, J., Lemerle, D., An, M., Liu, D.L. (2007) Autotoxicity of wheat (Triticum aestivum L.) as determined by laboratory bioassays. Plant Soil, 296, 85–93. https://doi.org/10.1007/s11104-007-9292-7.
Wu, H., Pratley, J., Lemerle, D., Haig, T. (2001) Allelopathy in wheat (Triticum aestivum). Ann Appl Biol, 139, 1–9. https://doi.org/10.1111/j.1744-7348.2001.tb00124.x.
Xia, Z.C., Kong, C.H., Chen, L.C., Wang, P., Wang, S.L. (2016) A broadleaf species enhances an autotoxic conifers growth through belowground chemical interactions. Ecology, 97(9), 2283–2292. https://doi.org/10.1002/ecy.1465.
Ye, S.F., Yu, J.Q., Peng, Y.H., Zheng, J.H., Zou, L.Y. (2004) Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. Plant Soil, 263, 143–150. https://link.springer.com/article/10.1023/B:PLSO.0000047721.78555.dc.
Yu, J., Morishita, D.W. (2014) Response of seven weed species to corn gluten meal and white mustard (Sinapis alba) seed meal rates. Weed Technol, 28(1), 259–265. https://doi.org/10.1614/WT-D-13-00116.1.
Zou, S., Li, X., Ma, Y., Yang, S. (2014) Soil microbes are linked to the allelopathic potential of different wheat genotypes. Plant Soil, 378, 49–58. https://doi.org/10.1007/s11104-013-2020-6.
المشرفين على المادة: 0 (Pheromones)
تواريخ الأحداث: Date Created: 20240812 Date Completed: 20240812 Latest Revision: 20240812
رمز التحديث: 20240813
DOI: 10.1111/ppl.14472
PMID: 39134465
قاعدة البيانات: MEDLINE
الوصف
تدمد:1399-3054
DOI:10.1111/ppl.14472