دورية أكاديمية

Functional near-infrared spectroscopy and language development: An integrative review.

التفاصيل البيبلوغرافية
العنوان: Functional near-infrared spectroscopy and language development: An integrative review.
المؤلفون: Januário GC; Department of Pediatrics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.; NUPAD - Center for Newborn Screening and Genetic Diagnostics, UFMG - Universidade Federal de Minas Gerais, Belo Horizonte, Brazil., Bertachini ALL; Department of Pediatrics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.; NUPAD - Center for Newborn Screening and Genetic Diagnostics, UFMG - Universidade Federal de Minas Gerais, Belo Horizonte, Brazil., Escarce AG; Department of Pediatrics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.; Department of Speech Language Pathology and Audiology, Universidade Federal de Minas Gerais, Brazil., de Resende LM; Department of Speech Language Pathology and Audiology, Universidade Federal de Minas Gerais, Brazil., de Miranda DM; Department of Pediatrics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
المصدر: International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience [Int J Dev Neurosci] 2024 Aug 12. Date of Electronic Publication: 2024 Aug 12.
Publication Model: Ahead of Print
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons, Inc Country of Publication: United States NLM ID: 8401784 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1873-474X (Electronic) Linking ISSN: 07365748 NLM ISO Abbreviation: Int J Dev Neurosci Subsets: MEDLINE
أسماء مطبوعة: Publication: 2020- : Hoboken, NJ : John Wiley & Sons, Inc.
Original Publication: Oxford : New York : Pergamon Press, c1983-
مستخلص: Functional near-infrared spectroscopy (fNIRS) stands poised to revolutionize our understanding of auditory detection, speech perception, and language development in infants. In this study, we conducted a meticulous integrative review across Medline, Scopus, and LILACS databases, targeting investigations utilizing fNIRS to explore language-related features and cortical activation during auditory stimuli in typical infants. We included studies that used the NIRS technique to study language and cortical activation in response to auditory stimuli in typical infants between 0 and 3 years old. We used the ROBINS-I tool to assess the quality and the risk of bias in the studies. Our analysis, encompassing 66 manuscripts, is presented in standardized tables for streamlined data extraction. We meticulously correlated findings with children's developmental stages, delineating crucial insights into brain development and its intricate interplay with language outcomes. Although most studies have a high risk for overall bias, especially due to the high loss of data in NIRS studies, the low risk in the other domains is predominant and homogeneous among the studies. Highlighted are the unique advantages of fNIRS for pediatric studies, underscored by its innate suitability for use in children. This review accentuates fNIRS' capacity to elucidate the neural correlates of language processing and the sequential steps of language acquisition. From birth, infants exhibit abilities that lay the foundation for language development. The progression from diffuse to specific neural activation patterns is extremely influenced by exposure to languages, social interaction, and prosodic features and, reflects the maturation of brain networks involved in language processing. In conclusion, fNIRS emerges as an indispensable functional imaging modality, providing insights into the temporal dynamics of language acquisition and associated developmental milestones. This synthesis presents the pivotal role of fNIRS in advancing our comprehension of early language development and paves the way for future research endeavors in this domain.
(© 2024 International Society for Developmental Neuroscience.)
References: Abboub, N., Nazzi, T., & Gervain, J. (2016). Prosodic grouping at birth. Brain and Language, 162, 46–59. https://doi.org/10.1016/j.bandl.2016.08.002.
Altvater‐Mackensen, N., & Grossmann, T. (2016). The role of left inferior frontal cortex during audiovisual speech perception in infants. NeuroImage, 133, 14–20. https://doi.org/10.1016/j.neuroimage.2016.02.061.
Altvater‐Mackensen, N., & Grossmann, T. (2018). Modality‐independent recruitment of inferior frontal cortex during speech processing in human infants. Developmental Cognitive Neuroscience, 34, 130–138. https://doi.org/10.1016/j.dcn.2018.10.002.
Arimitsu, T., Uchida‐Ota, M., Yagihashi, T., Kojima, S., Watanabe, S., Hokuto, I., Ikeda, K., Takahashi, T., & Minagawa‐Kawai, Y. (2011). Functional hemispheric specialization in processing phonemic and prosodic auditory changes in neonates. Frontiers in Psychology, 2, 202. https://doi.org/10.3389/fpsyg.2011.00202.
Aslin, R. N., Shukla, M., & Emberson, L. L. (2015). Hemodynamic correlates of cognition in human infants. Annual Review of Psychology, 3(66), 349–379. https://doi.org/10.1146/annurev-psych-010213-115108.
Azhari, A., Truzzi, A., Neoh, M. J., Balagtas, J. P. M., Tan, H. H., Goh, P. P., Ang, X. A., Setoh, P., Rigo, P., Bornstein, M. H., & Esposito, G. (2020). A decade of infant neuroimaging research: What have we learned and where are we going? Infant Behavior & Development, 58, 101389. https://doi.org/10.1016/j.infbeh.2019.101389.
Barker, B. A., & Newman, R. S. (2004). Listen to your mother! The role of talker familiarity in infant streaming. Cognition, 94(2), B45–B53. https://doi.org/10.1016/j.cognition.2004.06.001.
Belin, P., Fecteau, S., & Bedard, C. (2004). Thinking the voice: Neural correlates of voice perception. Trends in Cognitive Sciences, 8(3), 129–135. https://doi.org/10.1016/j.tics.2004.01.008.
Belin, P., Zatorre, R. J., Lafaille, P., Ahad, P., & Pike, B. (2000). Voice‐selective areas in human auditory cortex. Nature, 403(6767), 309–312. https://doi.org/10.1038/35002078.
Benavides‐Varela, S., & Gervain, J. (2017 Jun). Learning word order at birth: A NIRS study. Developmental Cognitive Neuroscience, 25, 198–208. https://doi.org/10.1016/j.dcn.2017.03.003.
Benavides‐Varela, S., Gomez, D. M., Macagno, F., Bion, R. A., Peretz, I., & Mehler, J. (2011). Memory in the neonate brain. PLoS ONE, 6(11), e27497. https://doi.org/10.1371/journal.pone.0027497.
Benavides‐Varela, S., Hochmann, J. R., Macagno, F., Nespor, M., & Mehler, J. (2012). Newborn's brain activity signals the origin of word memories. Proceedings of the National Academy of Sciences of the United States of America, 109(44), 17908–17913. https://doi.org/10.1073/pnas.1205413109.
Benavides‐Varela, S., Siugzdaite, R., Gomez, D. M., Macagno, F., Cattarossi, L., & Mehler, J. (2017). Brain regions and functional interactions supporting early word recognition in the face of input variability. Proceedings of the National Academy of Sciences of the United States of America, 114(29), 7588–7593. https://doi.org/10.1073/pnas.1617589114.
Birnholz, J. C., & Benacerraf, B. R. (1983). The development of human fetal hearing. Science, 222(4623), 516–518. https://doi.org/10.1126/science.6623091.
Boas, D. A., Elwell, C. E., Ferrari, M., & Taga, G. (2014). Twenty years of functional near‐infrared spectroscopy: Introduction for the special issue. NeuroImage, 15(85 Pt 1), 1–5. https://doi.org/10.1016/j.neuroimage.2013.11.033.
Bortfeld, H., Fava, E., & Boas, D. A. (2009). Identifying cortical lateralization of speech processing in infants using near‐infrared spectroscopy. Developmental Neuropsychology, 34(1), 52–65. https://doi.org/10.1080/87565640802564481.
Bortfeld, H., Wruck, E., & Boas, D. A. (2007). Assessing infants' cortical response to speech using near‐infrared spectroscopy. NeuroImage, 34(1), 407–415. https://doi.org/10.1016/j.neuroimage.2006.08.010.
Bouchon, C., Nazzi, T., & Gervain, J. (2015). Hemispheric asymmetries in repetition enhancement and suppression effects in the newborn brain. PLoS ONE, 10(10), e0140160. https://doi.org/10.1371/journal.pone.0140160.
Bouton, S., Chambon, V., Tyrand, R., Guggisberg, A. G., Seeck, M., Karkar, S., van de Ville, D., & Giraud, A. L. (2018). Focal versus distributed temporal cortex activity for speech sound category assignment. Proceedings of the National Academy of Sciences of the United States of America, 115(6), E1299–E1308. https://doi.org/10.1073/pnas.1714279115.
Bulkin, D. A., & Groh, J. M. (2006). Seeing sounds: Visual and auditory interactions in the brain. Current Opinion in Neurobiology, 16(4), 415–419. https://doi.org/10.1016/j.conb.2006.06.008.
Cacioppo, J. T., & Berntson, G. G. (1999). The affect system. Current directions in psychological science (Vol. 8) (pp. 8–137). American Psychological Society. https://doi.org/10.1111/1467-8721.00031.
Carniel, C. Z., Furtado, M. C. C., Vicente, J. B., Abreu, R. Z., Tarozzo, R. M., Cardia, S. E. T. R., Massei, M. C. I., & Cerveira, R. C. G. F. (2017). Influence of risk factors on language development and contributions of early stimulation: An integrative literature review. Rev CEFAC., 19, 109–118. https://doi.org/10.1590/1982-0216201719115616.
Chorna, O., Filippa, M., De Almeida, J. S., Lordier, L., Monaci, M. G., Huppi, P., Grandjean, D., & Guzzetta, A. (2019). Neuroprocessing mechanisms of music during fetal and neonatal development: A role in neuroplasticity and neurodevelopment. Neural Plasticity, 2019, 3972918. https://doi.org/10.1155/2019/3972918.
Costa, A., & Sebastian‐Galles, N. (2014). How does the bilingual experience sculpt the brain? Nature Reviews. Neuroscience, 15(5), 336–345. https://doi.org/10.1038/nrn3709.
Cristia, A., Minagawa‐Kawai, Y., Egorova, N., Gervain, J., Filippin, L., Cabrol, D., & Dupoux, E. (2014). Neural correlates of infant accent discrimination: An fNIRS study. Developmental Science, 17(4), 628–635. https://doi.org/10.1111/desc.12160.
Cutler, A., Dahan, D., & van Donselaar, W. (1997). Prosody in the comprehension of spoken language: A literature review. Language and Speech, 40(Pt 2), 141–201. https://doi.org/10.1177/002383099704000203.
Das, R., Jana, N., Arora, N., & Sengupta, S. (2020). Ultrasound assessment of fetal hearing response to vibroacoustic stimulation. The Journal of Maternal‐Fetal & Neonatal Medicine, 33(14), 2326–2332. https://doi.org/10.1080/14767058.2018.1548600.
De Jaegher, H., Di Paolo, E., & Gallagher, S. (2010). Can social interaction constitute social cognition? Trends in Cognitive Sciences, 14(10), 441–447. https://doi.org/10.1016/j.tics.2010.06.009.
DeCasper, A. J., & Fifer, W. P. (1980). Of human bonding: Newborns prefer their mothers' voices. Science, 208(4448), 1174–1176. https://doi.org/10.1126/science.7375928.
Ecklund‐Flores, L., & Turkewitz, G. (1996). Asymmetric headturning to speech and nonspeech in human newborns. Developmental Psychobiology, 29(3), 205–217. https://doi.org/10.1002/(SICI)1098-2302(199604)29:3<205::AID-DEV2>3.0.CO;2-V.
Emberson, L. L., Boldin, A. M., Robertson, C. E., Cannon, G., & Aslin, R. N. (2019). Expectation affects neural repetition suppression in infancy. Developmental Cognitive Neuroscience, 37, 100597. https://doi.org/10.1016/j.dcn.2018.11.001.
Emberson, L. L., Cannon, G., Palmeri, H., Richards, J. E., & Aslin, R. N. (2017). Using fNIRS to examine occipital and temporal responses to stimulus repetition in young infants: Evidence of selective frontal cortex involvement. Developmental Cognitive Neuroscience, 23, 26–38. https://doi.org/10.1016/j.dcn.2016.11.002.
Fava, E., Hull, R., Baumbauer, K., & Bortfeld, H. (2014). Hemodynamic responses to speech and music in preverbal infants. Child Neuropsychology, 20(4), 430–448. https://doi.org/10.1080/09297049.2013.803524.
Fava, E., Hull, R., & Bortfeld, H. (2011). Linking behavioral and neurophysiological indicators of perceptual tuning to language. Frontiers in Psychology, 2, 174. https://doi.org/10.3389/fpsyg.2011.00174.
Fava, E., Hull, R., & Bortfeld, H. (2014). Dissociating cortical activity during processing of native and non‐native audiovisual speech from early to late infancy. Brain Sciences, 4(3), 471–487. https://doi.org/10.3390/brainsci4030471.
Ferry, A. L., Flo, A., Brusini, P., Cattarossi, L., Macagno, F., Nespor, M., & Mehler, J. (2016 May). On the edge of language acquisition: Inherent constraints on encoding multisyllabic sequences in the neonate brain. Developmental Science, 19(3), 488–503. https://doi.org/10.1111/desc.12323.
Flo, A., Brusini, P., Macagno, F., Nespor, M., Mehler, J., & Ferry, A. L. (2019 Jul). Newborns are sensitive to multiple cues for word segmentation in continuous speech. Developmental Science, 22(4), e12802. https://doi.org/10.1111/desc.12802.
Fox, R., Olga, C., & Webb, K. (2019). Benefits of foreign language learning and bilingualism: An analysis of published empirical research 2012‐1019. Foreign Language Annals, 52, 699–726. https://doi.org/10.1111/flan.12424.
Gallagher, A., Wallois, F., & Obrig, H. (2023). Functional near‐infrared spectroscopy in pediatric clinical research: Different pathophysiologies and promising clinical applications. Neurophotonics., 10(2), 023517. https://doi.org/10.1117/1.NPh.10.2.023517.
Galuske, R. A., Schlote, W., Bratzke, H., & Singer, W. (2000). Interhemispheric asymmetries of the modular structure in human temporal cortex. Science, 289(5486), 1946–1949. https://doi.org/10.1126/science.289.5486.1946.
Gervain, J., Berent, I., & Werker, J. F. (2012). Binding at birth: The newborn brain detects identity relations and sequential position in speech. Journal of Cognitive Neuroscience, 24(3), 564–574. https://doi.org/10.1162/jocn&#95;a&#95;00157.
Gervain, J., Macagno, F., Cogoi, S., Pena, M., & Mehler, J. (2008). The neonate brain detects speech structure. Proceedings of the National Academy of Sciences of the United States of America, 105(37), 14222–14227. https://doi.org/10.1073/pnas.0806530105.
Gervain, J., & Mehler, J. (2010). Speech perception and language acquisition in the first year of life. Annual Review of Psychology, 61, 191–218. https://doi.org/10.1146/annurev.psych.093008.100408.
Gervain, J., Mehler, J., Werker, J. F., Nelson, C. A., Csibra, G., Lloyd‐Fox, S., Shukla, M., & Aslin, R. N. (2011). Near‐infrared spectroscopy: A report from the McDonnell infant methodology consortium. Developmental Cognitive Neuroscience, 1(1), 22–46. https://doi.org/10.1016/j.dcn.2010.07.004.
Gomez, D. M., Berent, I., Benavides‐Varela, S., Bion, R. A., Cattarossi, L., Nespor, M., & Mehler, J. (2014). Language universals at birth. Proceedings of the National Academy of Sciences of the United States of America, 111(16), 5837–5841. https://doi.org/10.1073/pnas.1318261111.
Grossmann, T., Oberecker, R., Koch, S. P., & Friederici, A. D. (2010). The developmental origins of voice processing in the human brain. Neuron, 65(6), 852–858. https://doi.org/10.1016/j.neuron.2010.03.001.
Grossmann, T., Parise, E., & Friederici, A. D. (2010). The detection of communicative signals directed at the self in infant prefrontal cortex. Frontiers in Human Neuroscience, 4, 201. https://doi.org/10.3389/fnhum.2010.00201.
Harel‐Gadassi, A., Friedlander, E., Yaari, M., Bar‐Oz, B., Eventov‐Friedman, S., Mankuta, D., & Yirmiya, N. (2020). Do developmental and temperamental characteristics mediate the association between preterm birth and the quality of mother‐child interaction? Infant Behavior & Development, 58, 101421. https://doi.org/10.1016/j.infbeh.2020.101421.
Hayashi, A., Tamekawa, Y., & Kiritani, S. (2001). Developmental change in auditory preferences for speech stimuli in Japanese infants. Journal of Speech, Language, and Hearing Research, 44(6), 1189–1200. https://doi.org/10.1044/1092-4388(2001/092).
Hepper, P. G., & Shahidullah, B. S. (1994). Development of fetal hearing. Archives of Disease in Childhood. Fetal and Neonatal Edition, 71(2), F81–F87. https://doi.org/10.1136/fn.71.2.F81.
Homae, F., Watanabe, H., Nakano, T., Asakawa, K., & Taga, G. (2006). The right hemisphere of sleeping infant perceives sentential prosody. Neuroscience Research, 54(4), 276–280. https://doi.org/10.1016/j.neures.2005.12.006.
Homae, F., Watanabe, H., Nakano, T., & Taga, G. (2007). Prosodic processing in the developing brain. Neuroscience Research, 59(1), 29–39. https://doi.org/10.1016/j.neures.2007.05.005.
Homae, F., Watanabe, H., Nakano, T., & Taga, G. (2011). Large‐scale brain networks underlying language acquisition in early infancy. Frontiers in Psychology, 2, 93. https://doi.org/10.3389/fpsyg.2011.00093.
Homae, F., Watanabe, H., & Tagab, G. (2014). The neural substrates of infant speech perception. Language Learning, 64, 6–26. https://doi.org/10.1111/lang.12076.
Hopia, H., Latvala, E., & Liimatainen, L. (2016). Reviewing the methodology of an integrative review. Scandinavian Journal of Caring Sciences, 30(4), 662–669. https://doi.org/10.1111/scs.12327.
Hutsler, J. J. (2003). The specialized structure of human language cortex: Pyramidal cell size asymmetries within auditory and language‐associated regions of the temporal lobes. Brain and Language, 86(2), 226–242. https://doi.org/10.1016/S0093-934X(02)00531-X.
Huttenlocher, J. (1998). Language input and language growth. Preventive Medicine, 27(2), 195–199. https://doi.org/10.1006/pmed.1998.0301.
Imafuku, M., Hakuno, Y., Uchida‐Ota, M., Yamamoto, J. I., & Minagawa, Y. (2014). "mom called me!" behavioral and prefrontal responses of infants to self‐names spoken by their mothers. NeuroImage, 103, 476–484. https://doi.org/10.1016/j.neuroimage.2014.08.034.
Issard, C., & Gervain, J. (2017). Adult‐like processing of time‐compressed speech by newborns: A NIRS study. Developmental Cognitive Neuroscience, 25, 176–184. https://doi.org/10.1016/j.dcn.2016.10.006.
Issard, C., & Gervain, J. (2018). Variability of the hemodynamic response in infants: Influence of experimental design and stimulus complexity. Developmental Cognitive Neuroscience, 33, 182–193. https://doi.org/10.1016/j.dcn.2018.01.009.
Jiang, J., Dai, B., Peng, D., Zhu, C., Liu, L., & Lu, C. (2012). Neural synchronization during face‐to‐face communication. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience., 32(45), 16064–16069. https://doi.org/10.1523/JNEUROSCI.2926-12.2012.
Kampe, K. K., Frith, C. D., & Frith, U. (2003). "hey John": Signals conveying communicative intention toward the self activate brain regions associated with "mentalizing," regardless of modality. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience., 23(12), 5258–5263. https://doi.org/10.1523/JNEUROSCI.23-12-05258.2003.
Kohlhoff, J., Morgan, S., Briggs, N., Egan, R., & Niec, L. (2020). Parent‐child interaction therapy with toddlers: A community‐based randomized controlled trial with children aged 14‐24 months. Journal of Clinical Child and Adolescent Psychology, 20, 1–16. https://doi.org/10.1080/15374416.2020.1723599.
Kotilahti, K., Nissila, I., Huotilainen, M., Makela, R., Gavrielides, N., Noponen, T., Björkman, P., Fellman, V., & Katila, T. (2005). Bilateral hemodynamic responses to auditory stimulation in newborn infants. Neuroreport, 16(12), 1373–1377. https://doi.org/10.1097/01.wnr.0000175247.35837.15.
Kotilahti, K., Nissila, I., Nasi, T., Lipiainen, L., Noponen, T., Merilainen, P., Huotilainen, M., & Fellman, V. (2010). Hemodynamic responses to speech and music in newborn infants. Human Brain Mapping, 31(4), 595–603. https://doi.org/10.1002/hbm.20890.
Kozberg, M., & Hillman, E. (2016). Neurovascular coupling and energy metabolism in the developing brain. Progress in Brain Research, 225, 213–242. https://doi.org/10.1016/bs.pbr.2016.02.002.
Lejeune, F., Lordier, L., Pittet, M. P., Schoenhals, L., Grandjean, D., Huppi, P. S., Filippa, M., & Borradori Tolsa, C. (2019). Effects of an early postnatal music intervention on cognitive and emotional development in preterm children at 12 and 24 months: Preliminary findings. Frontiers in Psychology, 10, 494. https://doi.org/10.3389/fpsyg.2019.00494.
Liu, H. M., Kuhl, P. K., & Tsao, F. M. (2003). An association between mothers' speech clarity and infants' speech discrimination skills. Developmental Science, 6, F1–F10. https://doi.org/10.1111/1467-7687.00275.
Lloyd‐Fox, S., Begus, K., Halliday, D., Pirazzoli, L., Blasi, A., Papademetriou, M., Darboe, M. K., Prentice, A. M., Johnson, M. H., Moore, S. E., & Elwell, C. E. (2017). Cortical specialisation to social stimuli from the first days to the second year of life: A rural Gambian cohort. Developmental Cognitive Neuroscience, 25, 92–104. https://doi.org/10.1016/j.dcn.2016.11.005.
Lloyd‐Fox, S., Blasi, A., & Elwell, C. E. (2010). Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy. Neuroscience and Biobehavioral Reviews, 34(3), 269–284. https://doi.org/10.1016/j.neubiorev.2009.07.008.
Lloyd‐Fox, S., Blasi, A., Mercure, E., Elwell, C. E., & Johnson, M. H. (2012). The emergence of cerebral specialization for the human voice over the first months of life. Social Neuroscience, 7(3), 317–330. https://doi.org/10.1080/17470919.2011.614696.
Mandel, D. R., Jusczyk, P. W., & Nelson, D. G. (1994). Does sentential prosody help infants organize and remember speech information? Cognition, 53(2), 155–180. https://doi.org/10.1016/0010-0277(94)90069-8.
Maurer, D., & Werker, J. F. (2014). Perceptual narrowing during infancy: A comparison of language and faces. Developmental Psychobiology, 56(2), 154–178. https://doi.org/10.1002/dev.21177.
May, L., Byers‐Heinlein, K., Gervain, J., & Werker, J. F. (2011). Language and the newborn brain: Does prenatal language experience shape the neonate neural response to speech? Frontiers in Psychology, 2, 222. https://doi.org/10.3389/fpsyg.2011.00222.
May, L., Gervain, J., Carreiras, M., & Werker, J. F. (2018 May). The specificity of the neural response to speech at birth. Developmental Science, 21(3), e12564. https://doi.org/10.1111/desc.12564.
McDonald, N. M., Perdue, K. L., Eilbott, J., Loyal, J., Shic, F., & Pelphrey, K. A. (2019). Infant brain responses to social sounds: A longitudinal functional near‐infrared spectroscopy study. Developmental Cognitive Neuroscience, 36, 100638. https://doi.org/10.1016/j.dcn.2019.100638.
Mercure, E., Evans, S., Pirazzoli, L., Goldberg, L., Bowden‐Howl, H., Coulson‐Thaker, K., Beedie, I., Lloyd‐Fox, S., Johnson, M. H., & MacSweeney, M. (2020). Language experience impacts brain activation for spoken and signed language in infancy: Insights from unimodal and bimodal bilinguals. Neurobiol Lang (Camb)., 1(1), 9–32. https://doi.org/10.1162/nol&#95;a&#95;00001.
Minagawa, Y., Hakuno, Y., Kobayashi, A., Naoi, N., & Kojima, S. (2017). Infant word segmentation recruits the cerebral network of phonological short‐term memory. Brain and Language, 170, 39–49. https://doi.org/10.1016/j.bandl.2017.03.005.
Minagawa‐Kawai, Y., Cristia, A., & Dupoux, E. (2011). Cerebral lateralization and early speech acquisition: A developmental scenario. Developmental Cognitive Neuroscience, 1(3), 217–232. https://doi.org/10.1016/j.dcn.2011.03.005.
Minagawa‐Kawai, Y., Cristia, A., Long, B., Vendelin, I., Hakuno, Y., Dutat, M., Filippin, L., Cabrol, D., & Dupoux, E. (2013). Insights on NIRS sensitivity from a cross‐linguistic study on the emergence of phonological grammar. Frontiers in Psychology, 4, 170. https://doi.org/10.3389/fpsyg.2013.00170.
Minagawa‐Kawai, Y., Cristia, A., Vendelin, I., Cabrol, D., & Dupoux, E. (2011). Assessing signal‐driven mechanisms in neonates: Brain responses to temporally and spectrally different sounds. Frontiers in Psychology, 2, 135. https://doi.org/10.3389/fpsyg.2011.00135.
Minagawa‐Kawai, Y., Mori, K., Naoi, N., & Kojima, S. (2007). Neural attunement processes in infants during the acquisition of a language‐specific phonemic contrast. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience., 27(2), 315–321. https://doi.org/10.1523/JNEUROSCI.1984-06.2007.
Minagawa‐Kawai, Y., van der Lely, H., Ramus, F., Sato, Y., Mazuka, R., & Dupoux, E. (2011). Optical brain imaging reveals general auditory and language‐specific processing in early infant development. Cerebral Cortex, 21(2), 254–261. https://doi.org/10.1093/cercor/bhq082.
Molavi, B., May, L., Gervain, J., Carreiras, M., Werker, J. F., & Dumont, G. A. (2013). Analyzing the resting state functional connectivity in the human language system using near infrared spectroscopy. Frontiers in Human Neuroscience, 7, 921.
Nakamura, K., Kawashima, R., Ito, K., Sugiura, M., Kato, T., Nakamura, A., Hatano, K., Nagumo, S., Kubota, K., Fukuda, H., & Kojima, S. (1999). Activation of the right inferior frontal cortex during assessment of facial emotion. Journal of Neurophysiology, 82(3), 1610–1614. https://doi.org/10.1152/jn.1999.82.3.1610.
Nakano, T., Homae, F., Watanabe, H., & Taga, G. (2008). Anticipatory cortical activation precedes auditory events in sleeping infants. PLoS ONE, 3(12), e3912. https://doi.org/10.1371/journal.pone.0003912.
Nakano, T., Watanabe, H., Homae, F., & Taga, G. (2009). Prefrontal cortical involvement in young infants' analysis of novelty. Cerebral Cortex, 19(2), 455–463. https://doi.org/10.1093/cercor/bhn096.
Naoi, N., Minagawa‐Kawai, Y., Kobayashi, A., Takeuchi, K., Nakamura, K., Yamamoto, J., & Kojima, S. (2012). Cerebral responses to infant‐directed speech and the effect of talker familiarity. NeuroImage, 59(2), 1735–1744. https://doi.org/10.1016/j.neuroimage.2011.07.093.
Obrig, H., Mock, J., Stephan, F., Richter, M., Vignotto, M., & Rossi, S. (2017). Impact of associative word learning on phonotactic processing in 6‐month‐old infants: A combined EEG and fNIRS study. Developmental Cognitive Neuroscience, 25, 185–197. https://doi.org/10.1016/j.dcn.2016.09.001.
Oliveira, S. R., Machado, A. C. C. P., Miranda, D. M., Campos, F. S., Ribeiro, C. O., Magalhães, L. C., & Bouzada, M. C. (2015). Near‐infrared spectroscopy as an auxiliary tool in the study of child development. Revista Paulista de. Pediatria, 33, 230–240.
Pena, M., Maki, A., Kovacic, D., Dehaene‐Lambertz, G., Koizumi, H., Bouquet, F., & Mehler, J. (2003). Sounds and silence: An optical topography study of language recognition at birth. Proceedings of the National Academy of Sciences of the United States of America, 100(20), 11702–11705. https://doi.org/10.1073/pnas.1934290100.
Petitto, L. A., Berens, M. S., Kovelman, I., Dubins, M. H., Jasinska, K., & Shalinsky, M. (2012 May). The "perceptual wedge hypothesis" as the basis for bilingual babies' phonetic processing advantage: New insights from fNIRS brain imaging. Brain and Language, 121(2), 130–143. https://doi.org/10.1016/j.bandl.2011.05.003.
Piazza, E. A., Hasenfratz, L., Hasson, U., & Lew‐Williams, C. (2020). Infant and adult brains are coupled to the dynamics of natural communication. Psychological Science, 31(1), 6–17. https://doi.org/10.1177/0956797619878698.
Providencia, B., & Margolis, I. (2022). fNIRS an emerging Technoogy for Design: Advantages and disadvantages. Neuroergonomics and cognitive. Engineering, 42, 103–112.
Querleu, D., Renard, X., Versyp, F., Paris‐Delrue, L., & Crepin, G. (1988). Fetal hearing. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 28(3), 191–212. https://doi.org/10.1016/0028-2243(88)90030-5.
Rahman, M. A., Siddik, A. B., Ghosh, T. K., Khanam, F., & Ahmad, M. (2020 Oct). A narrative review on clinical applications of fNIRS. Journal of Digital Imaging, 33(5), 1167–1184. https://doi.org/10.1007/s10278-020-00387-1.
Saito, Y., Aoyama, S., Kondo, T., Fukumoto, R., Konishi, N., Nakamura, K., Kobayashi, M., & Toshima, T. (2007). Frontal cerebral blood flow change associated with infant‐directed speech. Archives of Disease in Childhood. Fetal and Neonatal Edition, 92(2), F113–F116. https://doi.org/10.1136/adc.2006.097949.
Saito, Y., Kondo, T., Aoyama, S., Fukumoto, R., Konishi, N., Nakamura, K., Kobayashi, M., & Toshima, T. (2007). The function of the frontal lobe in neonates for response to a prosodic voice. Early Human Development, 83(4), 225–230. https://doi.org/10.1016/j.earlhumdev.2006.05.017.
Sato, H., Hirabayashi, Y., Tsubokura, H., Kanai, M., Ashida, T., Konishi, I., Uchida‐Ota, M., Konishi, Y., & Maki, A. (2012). Cerebral hemodynamics in newborn infants exposed to speech sounds: A whole‐head optical topography study. Human Brain Mapping, 33(9), 2092–2103. https://doi.org/10.1002/hbm.21350.
Sato, Y., Sogabe, Y., & Mazuka, R. (2010). Development of hemispheric specialization for lexical pitch‐accent in Japanese infants. Journal of Cognitive Neuroscience, 22(11), 2503–2513. https://doi.org/10.1162/jocn.2009.21377.
Smith, E. G., Condy, E., Anderson, A., Thurm, A., Manwaring, S. S., Swineford, L., Gandjbakhche, A., & Redcay, E. (2020). Functional near‐infrared spectroscopy in toddlers: Neural differentiation of communicative cues and relation to future language abilities. Developmental Science, 11, e12948. https://doi.org/10.1111/desc.12948.
Steber, S., & Rossi, S. (2020). So young, yet so mature? Electrophysiological and vascular correlates of phonotactic processing in 18‐month‐olds. Developmental Cognitive Neuroscience, 43, 100784. https://doi.org/10.1016/j.dcn.2020.100784.
Stephens, G. J., Silbert, L. J., & Hasson, U. (2010). Speaker‐listener neural coupling underlies successful communication. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14425–14430. https://doi.org/10.1073/pnas.1008662107.
Stern, D. N., Spieker, S., Barnett, R. K., & MacKain, K. (1983). The prosody of maternal speech: Infant age and context related changes. Journal of Child Language, 10(1), 1–15. https://doi.org/10.1017/S0305000900005092.
Sterne, J. A., Hernan, M. A., Reeves, B. C., Savovic, J., Berkman, N. D., Viswanathan, M., Henry, D., Altman, D. G., Ansari, M. T., Boutron, I., Carpenter, J. R., Chan, A. W., Churchill, R., Deeks, J. J., Hróbjartsson, A., Kirkham, J., Jüni, P., Loke, Y. K., Pigott, T. D., … Higgins, J. P. (2016). ROBINS‐I: A tool for assessing risk of bias in non‐randomised studies of interventions. BMJ, 12(355), i4919. https://doi.org/10.1136/bmj.i4919.
Strangman, G., Culver, J. P., Thompson, J. H., & Boas, D. A. (2002). A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. NeuroImage, 17(2), 719–731. https://doi.org/10.1006/nimg.2002.1227.
Sulpizio, S., Doi, H., Bornstein, M. H., Cui, J., Esposito, G., & Shinohara, K. (2018). fNIRS reveals enhanced brain activation to female (versus male) infant directed speech (relative to adult directed speech) in young human infants. Infant Behavior & Development, 52, 89–96. https://doi.org/10.1016/j.infbeh.2018.05.009.
Taga, G., & Asakawa, K. (2007). Selectivity and localization of cortical response to auditory and visual stimulation in awake infants aged 2 to 4 months. NeuroImage, 36(4), 1246–1252. https://doi.org/10.1016/j.neuroimage.2007.04.037.
Telkemeyer, S., Rossi, S., Koch, S. P., Nierhaus, T., Steinbrink, J., Poeppel, D., Obrig, H., & Wartenburger, I. (2009). Sensitivity of newborn auditory cortex to the temporal structure of sounds. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience., 29(47), 14726–14733. https://doi.org/10.1523/JNEUROSCI.1246-09.2009.
Telkemeyer, S., Rossi, S., Nierhaus, T., Steinbrink, J., Obrig, H., & Wartenburger, I. (2011). Acoustic processing of temporally modulated sounds in infants: Evidence from a combined near‐infrared spectroscopy and EEG study. Frontiers in Psychology, 1, 62. https://doi.org/10.3389/fpsyg.2011.00062.
Tsuji, S., & Cristia, A. (2014). Perceptual attunement in vowels: A meta‐analysis. Developmental Psychobiology, 56(2), 179–191. https://doi.org/10.1002/dev.21179.
Tsuji, S., Fikkert, P., Minagawa, Y., Dupoux, E., Filippin, L., Versteegh, M., Hagoort, P., & Cristia, A. (2017). The more, the better? Behavioral and neural correlates of frequent and infrequent vowel exposure. Developmental Psychobiology, 59(5), 603–612. https://doi.org/10.1002/dev.21534.
Uchida‐Ota, M., Arimitsu, T., Tsuzuki, D., Dan, I., Ikeda, K., Takahashi, T., & Minagawa, Y. (2019). Maternal speech shapes the cerebral frontotemporal network in neonates: A hemodynamic functional connectivity study. Developmental Cognitive Neuroscience, 39, 100701. https://doi.org/10.1016/j.dcn.2019.100701.
Vaish, A., Grossmann, T., & Woodward, A. (2008). Not all emotions are created equal: The negativity bias in social‐emotional development. Psychological Bulletin, 134(3), 383–403. https://doi.org/10.1037/0033-2909.134.3.383.
Vannasing, P., Florea, O., Gonzalez‐Frankenberger, B., Tremblay, J., Paquette, N., Safi, D., Wallois, F., Lepore, F., Béland, R., Lassonde, M., & Gallagher, A. (2016). Distinct hemispheric specializations for native and non‐native languages in one‐day‐old newborns identified by fNIRS. Neuropsychologia, 84, 63–69. https://doi.org/10.1016/j.neuropsychologia.2016.01.038.
Vouloumanos, A., Kiehl, K. A., Werker, J. F., & Liddle, P. F. (2001). Detection of sounds in the auditory stream: Event‐related fMRI evidence for differential activation to speech and nonspeech. Journal of Cognitive Neuroscience, 13(7), 994–1005. https://doi.org/10.1162/089892901753165890.
Wagner, J. B., Fox, S. E., Tager‐Flusberg, H., & Nelson, C. A. (2011). Neural processing of repetition and non‐repetition grammars in 7‐ and 9‐month‐old infants. Frontiers in Psychology, 2, 168. https://doi.org/10.3389/fpsyg.2011.00168.
Whittemore, R., & Knafl, K. (2005). The integrative review: Updated methodology. Journal of Advanced Nursing, 52(5), 546–553. https://doi.org/10.1111/j.1365-2648.2005.03621.x.
Yang, J., Asano, M., Kanazawa, S., Yamaguchi, M. K., & Imai, M. (2019). Sound symbolism processing is lateralized to the right temporal region in the prelinguistic infant brain. Scientific Reports, 9(1), 13435. https://doi.org/10.1038/s41598-019-49917-0.
Zatorre, R. J., Belin, P., & Penhune, V. B. (2002). Structure and function of auditory cortex: Music and speech. Trends in Cognitive Sciences, 6(1), 37–46. https://doi.org/10.1016/S1364-6613(00)01816-7.
Zhang, D., Chen, Y., Hou, X., & Wu, Y. J. (2019). Near‐infrared spectroscopy reveals neural perception of vocal emotions in human neonates. Human Brain Mapping, 40(8), 2434–2448. https://doi.org/10.1002/hbm.24534.
معلومات مُعتمدة: 001 Coordenação de Aperfeiçoamento de Pesquisas de Nível Superior - Brasil (Capes)
فهرسة مساهمة: Keywords: child; infant; language; language development; near‐infrared; spectroscopy
تواريخ الأحداث: Date Created: 20240813 Latest Revision: 20240813
رمز التحديث: 20240813
DOI: 10.1002/jdn.10366
PMID: 39135460
قاعدة البيانات: MEDLINE
الوصف
تدمد:1873-474X
DOI:10.1002/jdn.10366