دورية أكاديمية

Acceleration of Final Residual Solvent Extraction From Poly(lactide-co-glycolide) Microparticles.

التفاصيل البيبلوغرافية
العنوان: Acceleration of Final Residual Solvent Extraction From Poly(lactide-co-glycolide) Microparticles.
المؤلفون: Kias F; College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169, Berlin, Germany., Bodmeier R; College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169, Berlin, Germany. bodmeier@zedat.fu-berlin.de.
المصدر: Pharmaceutical research [Pharm Res] 2024 Sep; Vol. 41 (9), pp. 1869-1879. Date of Electronic Publication: 2024 Aug 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 8406521 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-904X (Electronic) Linking ISSN: 07248741 NLM ISO Abbreviation: Pharm Res Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : New York, NY : Kluwer Academic/Plenum Publishers
Original Publication: Stuttgart ; New York : Thieme, c1984-
مواضيع طبية MeSH: Solvents*/chemistry , Methylene Chloride*/chemistry , Dexamethasone*/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer*/chemistry, Particle Size ; Risperidone/chemistry ; Lactic Acid/chemistry ; Polyglycolic Acid/chemistry ; Drug Compounding/methods ; Microspheres
مستخلص: Purpose: The removal of the residual solvent dichloromethane from biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) microparticles was investigated by aqueous or alcoholic wet extraction or vacuum-drying.
Methods: Microparticles were prepared by the O/W solvent extraction/evaporation method. The solidified microparticles were separated by filtration and the effect of subsequent drying and wet extraction methods were investigated. The residual solvent content was analysed with gas chromatography (organic solvents) and Karl Fischer titration (water). The effect of extraction conditions on microparticle aggregation, surface morphology and encapsulation of the drugs dexamethasone and risperidone was investigated.
Results: Residual dichloromethane was reduced to 2.43% (w/w) (20 °C) or 0.03% (w/w) (35 °C) by aqueous wet extraction. With vacuum-drying, residual dichloromethane only decreased from about 5% (w/w) to 4.34% (w/w) (20 °C) or 3.20% (w/w) (35 °C) due to the lack of the plasticizing effect of water. Redispersion of filtered, wet microparticles in alcoholic media significantly improved the extraction due to an increased PLGA plasticization. The potential of different extractants was explained with the Gordon-Taylor equation and Hansen solubility parameters. Extraction in methanol: or ethanol:water mixtures reduced residual dichloromethane from 4 - 7% (w/w) to 0.5 - 2.3% (w/w) within 1 h and 0.08 - 0.18% (w/w) within 6 h. Higher alcohol contents and higher temperature resulted in aggregation of microparticles and lower drug loadings.
Conclusion: The final removal of residual dichloromethane was more efficient with alcoholic wet extraction followed by aqueous wet extraction at elevated temperature and vacuum drying of the microparticles.
(© 2024. The Author(s).)
References: Yeo Y, Baek N, Park K. Microencapsulation methods for delivery of protein drugs. Biotechnol Bioprocess Eng. 2001;6(4):213–30. (PMID: 10.1007/BF02931982)
Schoubben A, Ricci M, Giovagnoli S. Meeting the unmet: from traditional to cutting-edge techniques for poly lactide and poly lactide-co-glycolide microparticle manufacturing. J Pharm Investig. 2019;49(4):381–404. (PMID: 10.1007/s40005-019-00446-y)
Dixit K, Athawale RB, Singh S. Quality control of residual solvent content in polymeric microparticles. J Microencapsul. 2015;32(2):107–22. (PMID: 10.3109/02652048.2014.99573025560934)
Freitas S, Merkle HP, Gander B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J Control Release. 2005;102(2):313–32. (PMID: 10.1016/j.jconrel.2004.10.01515653154)
The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. Impurities: Guideline for Residual Solvents: ICH Q3C (R9); 2024.
Yeo Y, Park K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch Pharm Res. 2004;27(1):1–12. (PMID: 10.1007/BF0298003714969330)
Kias F, Bodmeier R. Control of encapsulation efficiency and morphology of poly(lactide-co-glycolide) microparticles with a diafiltration-driven solvent extraction process. Submitted to Eur J Pharm Biopharm: Unpublished results; 2024.
Foss WR, Anderl JN, Clausi AL, Burke PA. Diffusivities of dichloromethane in poly(lactide- co -glycolide). J Appl Polym Sci. 2009;112(3):1622–9. (PMID: 10.1002/app.29554)
Katou H, Wandrey AJ, Gander B. Kinetics of solvent extraction/evaporation process for PLGA microparticle fabrication. Int J Pharm. 2008;364(1):45–53. (PMID: 10.1016/j.ijpharm.2008.08.01518782610)
Li W-I, Anderson KW, Mehta RC, Deluca PP. Prediction of solvent removal profile and effect on properties for peptide-loaded PLGA microspheres prepared by solvent extraction/ evaporation method. J Control Release. 1995;37(3):199–214. (PMID: 10.1016/0168-3659(95)00076-3)
Wang B, Yamaguchi T, Nakao S-I. Solvent diffusion in amorphous glassy polymers. J Polym Sci B Polym Phys. 2000;38(6):846–56. (PMID: 10.1002/(SICI)1099-0488(20000315)38:6<846::AID-POLB5>3.0.CO;2-B)
Sturm DR, Danner RP, Moser JD, Chiu S-W. Application of the Vrentas-Duda free-volume theory of diffusion below the glass-transition temperature: Application to hypromellose acetate succinate-solvent systems. J Appl Polym Sci. 2019;136(16):47351. (PMID: 10.1002/app.47351)
Di Maio E, Iannace S, Mensitieri G. Mass transport of low molecular weight compounds in polymers. In: Kiran E, editor. Foaming with Supercritical Fluids. 1st ed. Elsevier; 2021. p. 179–230 (Supercritical Fluid Science and Technology Volume; vol. 9).
Thomasin C, Johansen P, Alder R, Bemsel R, Hottinger G, Altorfer H, et al. A contribution to overcoming the problem of residual solvents in biodegradable microspheres prepared by coacervation. Eur J Pharm Biopharm. 1996;42:16–24.
Kamali H, Atamanesh M, Kaffash E, Mohammadpour F, Khodaverdi E, Hadizadeh F. Elimination of residual solvent from PLGA microspheres containing risperidone using supercritical carbon dioxide. J Drug Deliv Sci Technol. 2020;57: 101702. (PMID: 10.1016/j.jddst.2020.101702)
Wu Z, Zhao M, Zhang W, Yang Z, Xu S, Shang Q. Influence of drying processes on the structures, morphology and in vitro release profiles of risperidone-loaded PLGA microspheres. J Microencapsul. 2019;36(1):21–31. (PMID: 10.1080/02652048.2019.158272330757946)
Operti MC, Bernhardt A, Sincari V, Jager E, Grimm S, Engel A, et al. Industrial Scale Manufacturing and Downstream Processing of PLGA-Based Nanomedicines Suitable for Fully Continuous Operation. Pharmaceutics. 2022;14(2):276. (PMID: 10.3390/pharmaceutics14020276352140098878443)
Park K, Otte A, Sharifi F, Garner J, Skidmore S, Park H, et al. Potential Roles of the Glass Transition Temperature of PLGA Microparticles in Drug Release Kinetics. Mol Pharm. 2021;18(1):18–32. (PMID: 10.1021/acs.molpharmaceut.0c0108933331774)
Rickey ME, Ramstack JM, Kumar R. Residual solvent extraction method and microparticles produced thereby. U.S. 6,824,822 B2.
Yeh M-K, Coombes A, Jenkins PG, Davis SS. A novel emulsification-solvent extraction technique for production of protein loaded biodegradable microparticles for vaccine and drug delivery. J Control Release. 1995;33(3):437–45. (PMID: 10.1016/0168-3659(94)00123-C)
Rickey ME, Ramstack JM, Lewis DH. Preparation of biodegradable, biocompatible microparticles containing a biologically active agent. U.S. 5,792,477 A.
Otte A, Soh BK, Park K. The Impact of Post-Processing Temperature on PLGA Microparticle Properties. Pharm Res. 2023;40(11):2677–85. (PMID: 10.1007/s11095-023-03568-z3758982610840666)
Shen J, Choi S, Qu W, Wang Y, Burgess DJ. In Vitro-In Vivo Correlation of Parenteral Risperidone Polymeric Microspheres. J Control Release. 2015;218:2–12. (PMID: 10.1016/j.jconrel.2015.09.051264232364721561)
Igartua M, Hernández RMA, Rosas JE, Patarroyo ME, Pedraz JL. Gamma-irradiation effects on biopharmaceutical properties of PLGA microspheres loaded with SPf66 synthetic vaccine. Eur J Pharm Biopharm. 2008;69(2):519–26. (PMID: 10.1016/j.ejpb.2007.12.01418280123)
Ahmed AR, Ciper M, Bodmeier R. Reduction in Burst Release from Poly(D, L-Lactide-Co-Glycolide) Microparticles by Solvent Treatment. Lett Drug Des Discov. 2010;7(10):759–64. (PMID: 10.2174/1570180811007010759)
Vay K, Frieß W, Scheler S. A detailed view of microparticle formation by in-process monitoring of the glass transition temperature. Eur J Pharm Biopharm. 2012;81(2):399–408. (PMID: 10.1016/j.ejpb.2012.02.01922426132)
Schabel W, Scharfer P, Kind M, Mamaliga I. Sorption and diffusion measurements in ternary polymer–solvent–solvent systems by means of a magnetic suspension balance—Experimental methods and correlations with a modified Flory-Huggins and free-volume theory. Chem Eng Sci. 2007;62(8):2254–66. (PMID: 10.1016/j.ces.2006.12.062)
Vrentas JS, Duda JL, Ling H-C. Self-diffusion in polymer-solvent-solvent systems. J Polym Sci Polym Phys Ed. 1984;22(3):459–69. (PMID: 10.1002/pol.1984.180220308)
Rawat A, Burgess DJ. Effect of physical ageing on the performance of dexamethasone loaded PLGA microspheres. Int J Pharm. 2011;415(1–2):164–8. (PMID: 10.1016/j.ijpharm.2011.05.06721664956)
Blasi P, D’Souza SS, Selmin F, Deluca PP. Plasticizing effect of water on poly(lactide-co-glycolide). J Control Release. 2005;108(1):1–9. (PMID: 10.1016/j.jconrel.2005.07.00916098624)
van Drooge DJ, Hinrichs WLJ, Visser MR, Frijlink HW. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques. Int J Pharm. 2006;310(1–2):220–9. (PMID: 10.1016/j.ijpharm.2005.12.00716427226)
Siepmann F, Le Brun V, Siepmann J. Drugs acting as plasticizers in polymeric systems: a quantitative treatment. J Control Release. 2006;115(3):298–306. (PMID: 10.1016/j.jconrel.2006.08.01617045358)
Schenderlein S, Lück M, Müller BW. Partial solubility parameters of poly(D, L-lactide-co-glycolide). Int J Pharm. 2004;286(1–2):19–26. (PMID: 10.1016/j.ijpharm.2004.07.03415500999)
Vay K, Scheler S, Friess W. Application of Hansen solubility parameters for understanding and prediction of drug distribution in microspheres. Int J Pharm. 2011;416(1):202–9. (PMID: 10.1016/j.ijpharm.2011.06.04721745557)
Bach F, Staufenbiel S, Bodmeier R. Implications of changes in physical state of drugs in poly(lactide-co-glycolide) matrices upon exposure to moisture and release medium. J Drug Deliv Sci Technol. 2023;80: 104115. (PMID: 10.1016/j.jddst.2022.104115)
Gu B, Burgess DJ. Prediction of dexamethasone release from PLGA microspheres prepared with polymer blends using a design of experiment approach. Int J Pharm. 2015;495(1):393–403. (PMID: 10.1016/j.ijpharm.2015.08.089263253094609624)
Germann D, Kurylo N, Han F. Risperidone. Profiles Drug Subst Excip Relat Methodol. 2012;37:313–61. (PMID: 10.1016/B978-0-12-397220-0.00008-822469322)
D’Souza S, Faraj JA, Dorati R, Deluca PP. Enhanced degradation of lactide-co-glycolide polymer with basic nucleophilic drugs. Adv Pharm. 2015;2015:1–10.
Lakzian K, Hosseiniallahchal S, JalaeiSalmani H, Sanjarifard A. Flash point prediction of binary totally and partially miscible water-alcohol mixtures by cubic-plus-association (CPA) equation of state. Thermochim Acta. 2020;691:178719. (PMID: 10.1016/j.tca.2020.178719)
Barton AFM. CRC handbook of solubility parameters and other cohesion parameters. 2nd ed. Boca Raton, Fla.: CRC Press; 1991.
Sugisaki M, Suga H, Seki S. Calorimetric study of the glassy state. III. Novel type calorimeter for study of glassy state and heat capacity of glassy methanol. Bull Chem Soc Jpn. 1968;41(11):2586–91. (PMID: 10.1246/bcsj.41.2586)
Benkhof S, Kudlik A, Blochowicz T, Rössler E. Two glass transitions in ethanol: a comparative dielectric relaxation study of the supercooled liquid and the plastic crystal. J. Phys.: Condens Matter. 1998;10(37):8155–71.
Talón C, Ramos MA, Vieira S, Shmyt’ko I, Afonikova N, Criado A, et al. Thermodynamic and structural properties of the two isomers of solid propanol. J Non-Cryst Solids. 2001;287(1–3):226–30. (PMID: 10.1016/S0022-3093(01)00565-8)
Toxqui-Terán A, Leyva-Porras C, Ruíz-Cabrera MÁ, Cruz-Alcantar P, Saavedra-Leos MZ. Thermal Study of Polyols for the Technological Application as Plasticizers in Food Industry. Polymers 2018;10(5):467.
فهرسة مساهمة: Keywords: microparticles; plasticization; poly(lactide-co-glycolide); solvent extraction; solvent residuals
المشرفين على المادة: 0 (Solvents)
588X2YUY0A (Methylene Chloride)
7S5I7G3JQL (Dexamethasone)
1SIA8062RS (Polylactic Acid-Polyglycolic Acid Copolymer)
L6UH7ZF8HC (Risperidone)
33X04XA5AT (Lactic Acid)
26009-03-0 (Polyglycolic Acid)
تواريخ الأحداث: Date Created: 20240815 Date Completed: 20240927 Latest Revision: 20240927
رمز التحديث: 20240927
DOI: 10.1007/s11095-024-03744-9
PMID: 39147990
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-904X
DOI:10.1007/s11095-024-03744-9