دورية أكاديمية

The inhibitory effect of chlorogenic acid on oxidative stress and apoptosis induced by PM 2.5 in HaCaT keratinocytes.

التفاصيل البيبلوغرافية
العنوان: The inhibitory effect of chlorogenic acid on oxidative stress and apoptosis induced by PM 2.5 in HaCaT keratinocytes.
المؤلفون: Herath HMUL; Department of Biochemistry, College of Medicine, Jeju National University, Jeju, Republic of Korea., Piao MJ; Department of Biochemistry, College of Medicine, Jeju National University, Jeju, Republic of Korea.; Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea., Kang KA; Department of Biochemistry, College of Medicine, Jeju National University, Jeju, Republic of Korea.; Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea., Fernando PDSM; Department of Biochemistry, College of Medicine, Jeju National University, Jeju, Republic of Korea.; Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea., Kang HK; Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea., Koh YS; Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea., Hyun JW; Department of Biochemistry, College of Medicine, Jeju National University, Jeju, Republic of Korea.; Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea.
المصدر: Journal of biochemical and molecular toxicology [J Biochem Mol Toxicol] 2024 Sep; Vol. 38 (9), pp. e23806.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 9717231 Publication Model: Print Cited Medium: Internet ISSN: 1099-0461 (Electronic) Linking ISSN: 10956670 NLM ISO Abbreviation: J Biochem Mol Toxicol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Wiley, c1998-
مواضيع طبية MeSH: Chlorogenic Acid*/pharmacology , Apoptosis*/drug effects , Oxidative Stress*/drug effects , Particulate Matter*/toxicity , Keratinocytes*/drug effects , Keratinocytes*/metabolism , Keratinocytes*/pathology, Humans ; Reactive Oxygen Species/metabolism ; HaCaT Cells ; Cell Survival/drug effects ; Membrane Potential, Mitochondrial/drug effects ; MAP Kinase Signaling System/drug effects
مستخلص: Exposure to fine particulate matter with an aerodynamic diameter of less than 2.5 μm (PM 2.5 ) can cause oxidative damage and apoptosis in the human skin. Chlorogenic acid (CGA) is a bioactive polyphenolic compound with antioxidant, antifungal, and antiviral properties. The objective of this study was to identify the ameliorating impact of CGA that might protect human HaCaT cells against PM 2.5 . CGA significantly scavenged the reactive oxygen species (ROS) generated by PM 2.5 , attenuated oxidative cellular/organelle damage, mitochondrial membrane depolarization, and suppressed cytochrome c release into the cytosol. The application of CGA led to a reduction in the expression levels of Bcl-2-associated X protein, caspase-9, and caspase-3, while simultaneously increasing the expression of B-cell lymphoma 2. In addition, CGA was able to reverse the decrease in cell viability caused by PM 2.5 via the inhibition of extracellular signal-regulated kinase (ERK). This effect was further confirmed by the use of the mitogen-activated protein kinase kinase inhibitor, which acted upstream of ERK. In conclusion, CGA protected keratinocytes from mitochondrial damage and apoptosis via ameliorating PM 2.5 -induced oxidative stress and ERK activation.
(© 2024 The Author(s). Journal of Biochemical and Molecular Toxicology published by Wiley Periodicals LLC.)
References: Y. Shi, Y. Ji, H. Sun, F. Hui, J. Hu, Y. Wu, J. Fang, H. Lin, J. Wang, H. Duan, M. Lanza, Sci. Rep. 2015, 5, 11232. https://doi.org/10.1038/srep11232.
M. J. Piao, M. J. Ahn, K. A. Kang, Y. S. Ryu, Y. J. Hyun, K. Shilnikova, A. X. Zhen, J. W. Jeong, Y. H. Choi, H. K. Kang, Y. S. Koh, J. W. Hyun, Arch. Toxicol. 2018, 92, 2077. https://doi.org/10.1007/s00204-018-2197-9.
Q. Li, Z. Kang, S. Jiang, J. Zhao, S. Yan, F. Xu, J. Xu, Int. J. Environ. Res. Public Health 2017, 14, 72. https://doi.org/10.3390/ijerph14010072.
R. Hu, X. Y. Xie, S. K. Xu, Y. N. Wang, M. Jiang, L. R. Wen, W. Lai, L. Guan, Chin. Med. J. 2017, 130, 2205. https://doi.org/10.4103/0366-6999.212942.
P. D. S. M. Fernando, M. J. Piao, A. X. Zhen, M. J. Ahn, J. M. Yi, Y. H. Choi, J. W. Hyun, Int. J. Med. Sci. 2020, 17, 63. https://doi.org/10.7150/ijms.36476.
A. X. Zhen, Y. J. Hyun, M. J. Piao, P. D. S. M. Fernando, K. A. Kang, M. J. Ahn, J. M. Yi, H. K. Kang, Y. S. Koh, N. H. Lee, J. W. Hyun, Mar. Drugs 2019, 17, 444. https://doi.org/10.3390/md17080444.
X. Jin, B. Xue, Q. Zhou, R. Su, Z. Li, J. Toxicol. Sci. 2018, 43, 101. https://doi.org/10.2131/jts.43.101.
H. Wei, W. Yuan, H. Yu, H. Geng, Environ. Sci. Pollut. Res. 2021, 28, 25819. https://doi.org/10.1007/s11356-021-12431-w.
S. Elmore, Toxicol. Pathol. 2007, 35, 495. https://doi.org/10.1080/01926230701320337.
J. W. Cha, M. J. Piao, K. C. Kim, C. W. Yao, J. Zheng, S. M. Kim, C. L. Hyun, Y. S. Ahn, J. W. Hyun, Biomol. Ther. 2014, 22, 136. https://doi.org/10.4062/biomolther.2014.006.
S. K. Singh, K. Thakur, V. Sharma, M. Saini, D. Sharma, S. Vishwas, V. Kakoty, R. S. Pal, M. V. N. L. Chaitanya, M. R. Babu, S. Gupta, Z. Rehman, Smriti, M. Singla, G. Gupta, V. Jakhmola, T. J. A. Pinto, P. Kumbhar, J. Disouza, V. Patravale, K. Dua, M. M. Gadewar, S. Afr. J. Bot. 2023, 159, 658. https://doi.org/10.1016/j.sajb.2023.06.038.
H. Kim, J. H. Pan, S. H. Kim, J. H. Lee, J. W. Park, Biochimie 2018, 150, 131. https://doi.org/10.1016/j.biochi.2018.05.008.
P. D. S. M. Fernando, M. J. Piao, K. A. Kang, A. X. Zhen, H. M. U. L. Herath, H. K. Kang, Y. H. Choi, J. W. Hyun, Antioxidants 2022, 11, 1363. https://doi.org/10.3390/antiox11071363.
D. Suo, S. Zeng, J. Zhang, L. Meng, L. Weng, Exp. Ther. Med. 2020, 19, 3227. https://doi.org/10.3892/etm.2020.8590.
D. Matuz‐Mares, M. González‐Andrade, M. G. Araiza‐Villanueva, M. M. Vilchis‐Landeros, H. Vázquez‐Meza, Antioxidants 2022, 11, 801. https://doi.org/10.3390/antiox11050801.
X. Cao, M. Fu, R. Bi, X. Zheng, B. Fu, S. Tian, C. Liu, Q. Li, J. Liu, Chemosphere 2021, 263, 128346. https://doi.org/10.1016/j.chemosphere.2020.128346.
X. Wang, H. Ni, W. Xu, B. Wu, T. Xie, C. Zhang, J. Cheng, Z. Li, L. Tao, Y. Zhang, Chemosphere 2021, 283, 131160. https://doi.org/10.1016/j.chemosphere.2021.131160.
R. Rashidi, R. Rezaee, A. Shakeri, A. W. Hayes, G. Karimi, J. Food Biochem. 2022, 46, e14254. https://doi.org/10.1111/jfbc.14254.
A. X. Zhen, M. J. Piao, K. A. Kang, P. D. S. M. Fernando, H. K. Kang, Y. S. Koh, J. M. Yi, J. W. Hyun, Biomol. Ther. 2019, 27, 562. https://doi.org/10.4062/biomolther.2019.061.
M. Sedeek, R. Nasrallah, R. M. Touyz, R. L. Hébert, J. Am. Soc. Nephrol. 2013, 24, 1512. https://doi.org/10.1681/ASN.2012111112.
I. Szanto, Int. J. Mol. Sci. 2022, 23(5), 2702. https://doi.org/10.3390/ijms23052702.
J. Kuroda, T. Ago, S. Matsushima, P. Zhai, M. D. Schneider, J. Sadoshima, Proc. Nat. Acad. Sci. 2010, 107, 15565. https://doi.org/10.1073/pnas.1002178107.
Y. S. Ryu, K. A. Kang, M. J. Piao, M. J. Ahn, J. M. Yi, Y. M. Hyun, S. H. Kim, M. K. Ko, C. O. Park, J. W. Hyun, Redox Biol. 2019, 21, 101080. https://doi.org/10.1016/j.redox.2018.101080.
S. Kawashima, T. Funakoshi, Y. Sato, N. Saito, H. Ohsawa, K. Kurita, K. Nagata, M. Yoshida, A. Ishigami, Sci. Rep. 2018, 8, 16199. https://doi.org/10.1038/s41598-018-34530-4.
C. F. A. Vogel, L. S. Van Winkle, C. Esser, T. Haarmann‐Stemmann, Redox Biol. 2020, 34, 101530. https://doi.org/10.1016/j.redox.2020.101530.
J. A. Holme, J. Vondráček, M. Machala, D. Lagadic‐Gossmann, C. F. A. Vogel, E. Le Ferrec, L. Sparfel, J. Øvrevik, Biochem. Pharmacol. 2023, 216, 115801. https://doi.org/10.1016/j.bcp.2023.115801.
S. Saha, B. Buttari, E. Panieri, E. Profumo, L. Saso, Molecules 2020, 25, 5474. https://doi.org/10.3390/molecules25225474.
J. E. Park, A. X. Zhen, M. J. Piao, K. A. Kang, J. Life Sci. 2023, 33, 305.
M. J. Piao, K. A. Kang, A. X. Zhen, H. K. Kang, Y. S. Koh, B. S. Kim, J. W. Hyun, Int. J. Mol. Sci. 2019, 20, 1490. https://doi.org/10.3390/ijms20061490.
Y. B. Othmène, H. Hamdi, I. B. Salem, E. Annabi, I. Amara, F. Neffati, M. F. Najjar, S. Abid‐Essefi, Chem. Biol. Interact. 2020, 330, 109114. https://doi.org/10.1016/j.cbi.2020.109114.
A. Rodríguez‐García, R. García‐Vicente, M. L. Morales, A. Ortiz‐Ruiz, J. Martínez‐López, M. Linares, Antioxidants 2020, 9, 1212. https://doi.org/10.3390/antiox9121212.
C. A. Juan, J. M. Pérez de la Lastra, F. J. Plou, E. Pérez‐Lebeña, Int. J. Mol. Sci. 2021, 22, 4642. https://doi.org/10.3390/ijms22094642.
A. R. Poetsch, Comput. Struct. Biotechnol. J. 2020, 18, 207. https://doi.org/10.1016/j.csbj.2019.12.013.
H. M. U. L. Herath, M. J. Piao, K. A. Kang, A. X. Zhen, P. D. S. M. Fernando, H. K. Kang, J. M. Yi, J. W. Hyun, Molecules 2022, 27, 4800. https://doi.org/10.3390/molecules27154800.
X. Liu, X. Zhao, X. Li, S. Lv, R. Ma, Y. Qi, A. Abulikemu, H. Duan, C. Guo, Y. Li, Z. Sun, J. Hazard. Mater. 2020, 397, 122608. https://doi.org/10.1016/j.jhazmat.2020.122608.
C. F. Huang, S. H. Liu, C. C. Su, K. M. Fang, C. C. Yen, C. Y. Yang, F. C. Tang, J. M. Liu, C. C. Wu, K. I. Lee, Y. W. Chen, Toxicology 2021, 455, 152764. https://doi.org/10.1016/j.tox.2021.152764.
L. Wu, F. Yang, S. Du, T. Hu, S. Wei, G. Wang, Q. Zeng, P. Luo, Environ. Toxicol. 2022, 37, 1321. https://doi.org/10.1002/tox.23486.
معلومات مُعتمدة: RS-2023-00270936 Ministry of education KR
فهرسة مساهمة: Keywords: PM2.5; apoptosis; chlorogenic acid; mitochondrial damage; reactive oxygen species
المشرفين على المادة: 318ADP12RI (Chlorogenic Acid)
0 (Particulate Matter)
0 (Reactive Oxygen Species)
تواريخ الأحداث: Date Created: 20240816 Date Completed: 20240816 Latest Revision: 20240816
رمز التحديث: 20240816
DOI: 10.1002/jbt.23806
PMID: 39148258
قاعدة البيانات: MEDLINE
الوصف
تدمد:1099-0461
DOI:10.1002/jbt.23806