دورية أكاديمية

Microglia contribute to polyG-dependent neurodegeneration in neuronal intranuclear inclusion disease.

التفاصيل البيبلوغرافية
العنوان: Microglia contribute to polyG-dependent neurodegeneration in neuronal intranuclear inclusion disease.
المؤلفون: Zhong S; Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China., Lian Y; Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China., Zhou B; Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China., Ren R; Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China., Duan L; Shanghai Medical College, Fudan University, Shanghai, China., Pan Y; Department of Neurology at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, China., Gong Y; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China., Wu X; Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China., Cheng D; Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China., Zhang P; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China., Lu B; Department of Neurology at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, China., Wang X; Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.; The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China., Ding J; Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. ding.jing@zs-hospital.sh.cn.; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China. ding.jing@zs-hospital.sh.cn.
المصدر: Acta neuropathologica [Acta Neuropathol] 2024 Aug 16; Vol. 148 (1), pp. 21. Date of Electronic Publication: 2024 Aug 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0412041 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-0533 (Electronic) Linking ISSN: 00016322 NLM ISO Abbreviation: Acta Neuropathol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer Verlag
مواضيع طبية MeSH: Microglia*/pathology , Microglia*/metabolism , Intranuclear Inclusion Bodies*/pathology , Intranuclear Inclusion Bodies*/metabolism , Neurodegenerative Diseases*/pathology , Neurodegenerative Diseases*/genetics , Neurodegenerative Diseases*/metabolism, Animals ; Mice ; Mice, Transgenic ; Trinucleotide Repeat Expansion/genetics ; Humans ; Male ; Female
مستخلص: Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder caused by the expansion of GGC trinucleotide repeats in NOTCH2NLC gene. Despite identifying uN2CpolyG, a toxic polyglycine (polyG) protein translated by expanded GGC repeats, the exact pathogenic mechanisms of NIID remain unclear. In this study, we investigated the role of polyG by expressing various forms of NOTCH2NLC in mice: the wild-type, the expanded form with 100 GGC repeats (either translating or not translating into uN2CpolyG), and the mutated form that encodes a pure polyG without GGC-repeat RNA and the C-terminal stretch (uN2CpolyG-dCT). Both uN2CpolyG and uN2CpolyG-dCT induced the formation of inclusions composed by filamentous materials and resulted in neurodegenerative phenotypes in mice, including impaired motor and cognitive performance, shortened lifespan, and pathologic lesions such as white-matter lesions, microgliosis, and astrogliosis. In contrast, expressing GGC-repeat RNA alone was non-pathogenic. Through bulk and single-nuclei RNA sequencing, we identified common molecular signatures linked to the expression of uN2CpolyG and uN2CpolyG-dCT, particularly the upregulation of inflammation and microglia markers, and the downregulation of immediate early genes and splicing factors. Importantly, microglia-mediated inflammation was visualized in NIID patients using positron emission tomography, correlating with levels of white-matter atrophy. Furthermore, microglia ablation ameliorated neurodegenerative phenotypes and transcriptional alterations in uN2CpolyG-expressing mice but did not affect polyG inclusions. Together, these results demonstrate that polyG is crucial for the pathogenesis of NIID and highlight the significant role of microglia in polyG-induced neurodegeneration.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Alvarez-Mora MI, Rodriguez-Revenga L, Madrigal I, Guitart-Mampel M, Garrabou G, Milà M (2017) Impaired mitochondrial function and dynamics in the pathogenesis of FXTAS. Mol Neurobiol 54:6896–6902. https://doi.org/10.1007/s12035-016-0194-7. (PMID: 10.1007/s12035-016-0194-727771901)
Amiri K, Hagerman RJ, Hagerman PJ (2008) Fragile X-associated tremor/ataxia syndrome: an aging face of the fragile X gene. Arch Neurol 65:19–25. https://doi.org/10.1001/archneurol.2007.30. (PMID: 10.1001/archneurol.2007.3018195136)
Amor S, McNamara NB, Gerrits E, Marzin MC, Kooistra SM, Miron VE et al (2022) White matter microglia heterogeneity in the CNS. Acta Neuropathol 143:125–141. https://doi.org/10.1007/s00401-021-02389-x. (PMID: 10.1007/s00401-021-02389-x34878590)
Asamitsu S, Yabuki Y, Ikenoshita S, Kawakubo K, Kawasaki M, Usuki S et al (2021) CGG repeat RNA G-quadruplexes interact with FMRpolyG to cause neuronal dysfunction in fragile X-related tremor/ataxia syndrome. Sci Adv. https://doi.org/10.1126/sciadv.abd9440. (PMID: 10.1126/sciadv.abd9440335238827806243)
Boivin M, Charlet-Berguerand N (2022) Trinucleotide CGG repeat diseases: an expanding field of polyglycine proteins? Front Genet 13:843014. https://doi.org/10.3389/fgene.2022.843014. (PMID: 10.3389/fgene.2022.843014352959418918734)
Boivin M, Deng J, Pfister V, Grandgirard E, Oulad-Abdelghani M, Morlet B et al (2021) Translation of GGC repeat expansions into a toxic polyglycine protein in NIID defines a novel class of human genetic disorders: the polyG diseases. Neuron 109:1825-1835.e1825. https://doi.org/10.1016/j.neuron.2021.03.038. (PMID: 10.1016/j.neuron.2021.03.038338871998186563)
Butovsky O, Weiner HL (2018) Microglial signatures and their role in health and disease. Nat Rev Neurosci 19:622–635. https://doi.org/10.1038/s41583-018-0057-5. (PMID: 10.1038/s41583-018-0057-5302063287255106)
Challis RC, Ravindra Kumar S, Chan KY, Challis C, Beadle K, Jang MJ et al (2019) Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nat Protoc 14:379–414. https://doi.org/10.1038/s41596-018-0097-3. (PMID: 10.1038/s41596-018-0097-330626963)
DeKosky ST, Ikonomovic MD, Wang X, Farlow M, Wisniewski S, Lopez OL et al (2003) Plasma and cerebrospinal fluid α1-antichymotrypsin levels in Alzheimer’s disease: correlation with cognitive impairment. Ann Neurol 53:81–90. https://doi.org/10.1002/ana.10414. (PMID: 10.1002/ana.1041412509851)
Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I (2018) Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173:1073–1081. https://doi.org/10.1016/j.cell.2018.05.003. (PMID: 10.1016/j.cell.2018.05.00329775591)
Deng J, Gu M, Miao Y, Yao S, Zhu M, Fang P et al (2019) Long-read sequencing identified repeat expansions in the 5′UTR of the NOTCH2NLC gene from Chinese patients with neuronal intranuclear inclusion disease. J Med Genet 56:758–764. https://doi.org/10.1136/jmedgenet-2019-106268. (PMID: 10.1136/jmedgenet-2019-10626831413119)
Deng J, Zhou B, Yu J, Han X, Fu J, Li X et al (2022) Genetic origin of sporadic cases and RNA toxicity in neuronal intranuclear inclusion disease. J Med Genet 59:462–469. https://doi.org/10.1136/jmedgenet-2020-107649. (PMID: 10.1136/jmedgenet-2020-10764933766934)
Depienne C, Mandel JL (2021) 30 years of repeat expansion disorders: What have we learned and what are the remaining challenges? Am J Hum Genet 108:764–785. https://doi.org/10.1016/j.ajhg.2021.03.011. (PMID: 10.1016/j.ajhg.2021.03.011338118088205997)
Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA et al (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82:380–397. https://doi.org/10.1016/j.neuron.2014.02.040. (PMID: 10.1016/j.neuron.2014.02.040247424614161285)
Fan Y, Li MJ, Yang J, Li SJ, Hao XY, Li JD et al (2023) GGC repeat expansion in NOTCH2NLC induces dysfunction in ribosome biogenesis and translation. Brain. https://doi.org/10.1093/brain/awad058. (PMID: 10.1093/brain/awad05836825461)
Guilarte TR (2019) TSPO in diverse CNS pathologies and psychiatric disease: a critical review and a way forward. Pharmacol Ther 194:44–58. https://doi.org/10.1016/j.pharmthera.2018.09.003. (PMID: 10.1016/j.pharmthera.2018.09.00330189290)
Gulen MF, Samson N, Keller A, Schwabenland M, Liu C, Glück S et al (2023) cGAS-STING drives ageing-related inflammation and neurodegeneration. Nature 620:374–380. https://doi.org/10.1038/s41586-023-06373-1. (PMID: 10.1038/s41586-023-06373-13753293210412454)
Han J, Harris RA, Zhang XM (2017) An updated assessment of microglia depletion: current concepts and future directions. Mol Brain 10:25. https://doi.org/10.1186/s13041-017-0307-x. (PMID: 10.1186/s13041-017-0307-x286293875477141)
Hoem G, Bowitz Larsen K, Øvervatn A, Brech A, Lamark T, Sjøttem E et al (2019) The FMRpolyGlycine protein mediates aggregate formation and toxicity independent of the CGG mRNA hairpin in a cellular model for FXTAS. Front Genet 10:249. https://doi.org/10.3389/fgene.2019.00249. (PMID: 10.3389/fgene.2019.00249309842406447689)
Huang Y, Xu Z, Xiong S, Sun F, Qin G, Hu G et al (2018) Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nat Neurosci 21:530–540. https://doi.org/10.1038/s41593-018-0090-8. (PMID: 10.1038/s41593-018-0090-829472620)
Ishiura H, Shibata S, Yoshimura J, Suzuki Y, Qu W, Doi K et al (2019) Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease. Nat Genet 51:1222–1232. https://doi.org/10.1038/s41588-019-0458-z. (PMID: 10.1038/s41588-019-0458-z31332380)
Ishiura H, Tsuji S (2020) Advances in repeat expansion diseases and a new concept of repeat motif-phenotype correlation. Curr Opin Genet Dev 65:176–185. https://doi.org/10.1016/j.gde.2020.05.029. (PMID: 10.1016/j.gde.2020.05.02932777681)
Iwahashi CK, Yasui DH, An HJ, Greco CM, Tassone F, Nannen K et al (2006) Protein composition of the intranuclear inclusions of FXTAS. Brain 129:256–271. https://doi.org/10.1093/brain/awh650. (PMID: 10.1093/brain/awh65016246864)
Jana M, Palencia CA, Pahan K (2008) Fibrillar amyloid-beta peptides activate microglia via TLR2: implications for Alzheimer’s disease. J Immunol (Baltimore, Md: 1950) 181:7254–7262. https://doi.org/10.4049/jimmunol.181.10.7254. (PMID: 10.4049/jimmunol.181.10.7254)
Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276-1290.e1217. https://doi.org/10.1016/j.cell.2017.05.018. (PMID: 10.1016/j.cell.2017.05.01828602351)
Kim C, Ho DH, Suk JE, You S, Michael S, Kang J et al (2013) Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 4:1562. https://doi.org/10.1038/ncomms2534. (PMID: 10.1038/ncomms253423463005)
Kurihara M, Mano T, Eto F, Yao I, Sato K, Ohtomo G et al (2023) Proteomic profile of nuclei containing p62-positive inclusions in a patient with neuronal intranuclear inclusion disease. Neurobiol Dis 177:105989. https://doi.org/10.1016/j.nbd.2023.105989. (PMID: 10.1016/j.nbd.2023.10598936621630)
Leng F, Edison P (2021) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 17:157–172. https://doi.org/10.1038/s41582-020-00435-y. (PMID: 10.1038/s41582-020-00435-y33318676)
Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487. https://doi.org/10.1038/nature21029. (PMID: 10.1038/nature21029280994145404890)
Liu Y, Mimuro M, Yoshida M, Hashizume Y, Niwa H, Miyao S et al (2008) Inclusion-positive cell types in adult-onset intranuclear inclusion body disease: implications for clinical diagnosis. Acta Neuropathol 116:615–623. https://doi.org/10.1007/s00401-008-0442-7. (PMID: 10.1007/s00401-008-0442-718923837)
Liu Q, Zhang K, Kang Y, Li Y, Deng P, Li Y et al (2022) Expression of expanded GGC repeats within NOTCH2NLC causes behavioral deficits and neurodegeneration in a mouse model of neuronal intranuclear inclusion disease. Sci Adv 8:eadd6391. https://doi.org/10.1126/sciadv.add6391. (PMID: 10.1126/sciadv.add6391364175289683706)
Liufu T, Zheng Y, Yu J, Yuan Y, Wang Z, Deng J et al (2022) The polyG diseases: a new disease entity. Acta Neuropathol Commun 10:79. https://doi.org/10.1186/s40478-022-01383-y. (PMID: 10.1186/s40478-022-01383-y356420149153130)
Lyoo CH, Ikawa M, Liow JS, Zoghbi SS, Morse CL, Pike VW et al (2015) Cerebellum can serve as a pseudo-reference region in Alzheimer disease to detect neuroinflammation measured with PET radioligand binding to translocator protein. J Nuclear Med 56:701–706. https://doi.org/10.2967/jnumed.114.146027. (PMID: 10.2967/jnumed.114.146027)
Ma L, Herren AW, Espinal G, Randol J, McLaughlin B, Martinez-Cerdeño V et al (2019) Composition of the intranuclear inclusions of fragile X-associated tremor/ataxia syndrome. Acta Neuropathol Commun 7:143. https://doi.org/10.1186/s40478-019-0796-1. (PMID: 10.1186/s40478-019-0796-1314811316720097)
Martínez Cerdeño V, Hong T, Amina S, Lechpammer M, Ariza J, Tassone F et al (2018) Microglial cell activation and senescence are characteristic of the pathology FXTAS. Movement Disord 33:1887–1894. https://doi.org/10.1002/mds.27553. (PMID: 10.1002/mds.2755330537011)
McFadden K, Hamilton RL, Insalaco SJ, Lavine L, Al-Mateen M, Wang G et al (2005) Neuronal intranuclear inclusion disease without polyglutamine inclusions in a child. J Neuropathol Exp Neurol 64:545–552. https://doi.org/10.1093/jnen/64.6.545. (PMID: 10.1093/jnen/64.6.54515977647)
Miele G, Seeger H, Marino D, Eberhard R, Heikenwalder M, Stoeck K et al (2008) Urinary alpha1-antichymotrypsin: a biomarker of prion infection. PLoS One 3:e3870. https://doi.org/10.1371/journal.pone.0003870. (PMID: 10.1371/journal.pone.0003870190576412586086)
Nuvolone M, Schmid N, Miele G, Sorce S, Moos R, Schori C et al (2017) Cystatin F is a biomarker of prion pathogenesis in mice. PLoS One 12:e0171923. https://doi.org/10.1371/journal.pone.0171923. (PMID: 10.1371/journal.pone.0171923281783535298286)
Ogasawara M, Iida A, Kumutpongpanich T, Ozaki A, Oya Y, Konishi H et al (2020) CGG expansion in NOTCH2NLC is associated with oculopharyngodistal myopathy with neurological manifestations. Acta Neuropathol Commun 8:204. https://doi.org/10.1186/s40478-020-01084-4. (PMID: 10.1186/s40478-020-01084-4332391117690190)
Pérez-Cadahía B, Drobic B, Davie JR (2011) Activation and function of immediate-early genes in the nervous system. Biochem Cell Biol = Biochimie et biologie cellulaire 89:61–73. https://doi.org/10.1139/o10-138. (PMID: 10.1139/o10-13821326363)
Raj T, Li YI, Wong G, Humphrey J, Wang M, Ramdhani S et al (2018) Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibility. Nat Genet 50:1584–1592. https://doi.org/10.1038/s41588-018-0238-1. (PMID: 10.1038/s41588-018-0238-1302979686354244)
Ram S, Devapriya IA, Fenton G, McVay L, Nguyen DV, Tassone F et al (2015) Axonal neuropathy in female carriers of the fragile X premutation with fragile x-associated tremor ataxia syndrome. Muscle Nerve 52:234–239. https://doi.org/10.1002/mus.24515. (PMID: 10.1002/mus.24515253884024427531)
Riguet N, Mahul-Mellier AL, Maharjan N, Burtscher J, Croisier M, Knott G et al (2021) Nuclear and cytoplasmic huntingtin inclusions exhibit distinct biochemical composition, interactome and ultrastructural properties. Nat Commun 12:6579. https://doi.org/10.1038/s41467-021-26684-z. (PMID: 10.1038/s41467-021-26684-z347729208589980)
Sellier C, Buijsen RAM, He F, Natla S, Jung L, Tropel P et al (2017) Translation of expanded CGG repeats into FMRpolyG is pathogenic and may contribute to fragile X tremor ataxia syndrome. Neuron 93:331–347. https://doi.org/10.1016/j.neuron.2016.12.016. (PMID: 10.1016/j.neuron.2016.12.016280656495263258)
Shi CH, Fan Y, Yang J, Yuan YP, Shen S, Liu F et al (2021) NOTCH2NLC intermediate-length repeat expansions are associated with parkinson disease. Ann Neurol 89:182–187. https://doi.org/10.1002/ana.25925. (PMID: 10.1002/ana.2592533016348)
Sone J, Mitsuhashi S, Fujita A, Mizuguchi T, Hamanaka K, Mori K et al (2019) Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat Genet 51:1215–1221. https://doi.org/10.1038/s41588-019-0459-y. (PMID: 10.1038/s41588-019-0459-y31332381)
Sone J, Mori K, Inagaki T, Katsumata R, Takagi S, Yokoi S et al (2016) Clinicopathological features of adult-onset neuronal intranuclear inclusion disease. Brain 139:3170–3186. https://doi.org/10.1093/brain/aww249. (PMID: 10.1093/brain/aww249277978085382941)
Sone J, Tanaka F, Koike H, Inukai A, Katsuno M, Yoshida M et al (2011) Skin biopsy is useful for the antemortem diagnosis of neuronal intranuclear inclusion disease. Neurology 76:1372–1376. https://doi.org/10.1212/WNL.0b013e3182166e13. (PMID: 10.1212/WNL.0b013e3182166e1321411744)
Sun W, Cornwell A, Li J, Peng S, Osorio MJ, Aalling N et al (2017) SOX9 is an astrocyte-specific nuclear marker in the adult brain outside the neurogenic regions. J Neurosci 37:4493–4507. https://doi.org/10.1523/jneurosci.3199-16.2017. (PMID: 10.1523/jneurosci.3199-16.2017283365675413187)
Sung JH, Ramirez-Lassepas M, Mastri AR, Larkin SM (1980) An unusual degenerative disorder of neurons associated with a novel intranuclear hyaline inclusion (neuronal intranuclear hyaline inclusion disease). A clinicopathological study of a case. J Neuropathol Exp Neurol 39:107–130. https://doi.org/10.1097/00005072-198003000-00001. (PMID: 10.1097/00005072-198003000-000016154779)
Swinnen B, Robberecht W, Van Den Bosch L (2020) RNA toxicity in non-coding repeat expansion disorders. EMBO J 39:e101112. https://doi.org/10.15252/embj.2018101112. (PMID: 10.15252/embj.201810111231721251)
Tai H, Wang A, Zhang Y, Liu S, Pan Y, Li K et al (2023) Clinical features and classification of neuronal intranuclear inclusion disease. Neurol Genet 9:e200057. https://doi.org/10.1212/nxg.0000000000200057. (PMID: 10.1212/nxg.00000000002000573709093410117695)
Tassone F, Beilina A, Carosi C, Albertosi S, Bagni C, Li L et al (2007) Elevated FMR1 mRNA in premutation carriers is due to increased transcription. RNA (New York, NY) 13:555–562. https://doi.org/10.1261/rna.280807. (PMID: 10.1261/rna.280807)
Tian Y, Wang JL, Huang W, Zeng S, Jiao B, Liu Z et al (2019) Expansion of human-specific GGC repeat in neuronal intranuclear inclusion disease-related disorders. Am J Hum Genet 105:166–176. https://doi.org/10.1016/j.ajhg.2019.05.013. (PMID: 10.1016/j.ajhg.2019.05.013311781266612530)
Tian Y, Zhou L, Gao J, Jiao B, Zhang S, Xiao Q et al (2022) Clinical features of NOTCH2NLC-related neuronal intranuclear inclusion disease. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2022-329772. (PMID: 10.1136/jnnp-2022-32977236150844)
Tröscher AR, Wimmer I, Quemada-Garrido L, Köck U, Gessl D, Verberk SGS et al (2019) Microglial nodules provide the environment for pathogenic T cells in human encephalitis. Acta Neuropathol 137:619–635. https://doi.org/10.1007/s00401-019-01958-5. (PMID: 10.1007/s00401-019-01958-5306630016426829)
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289. https://doi.org/10.1006/nimg.2001.0978. (PMID: 10.1006/nimg.2001.097811771995)
Waag R, Bohacek J (2023) Single-nucleus RNA-sequencing in brain tissue. Curr Protocols 3:e919. https://doi.org/10.1002/cpz1.919. (PMID: 10.1002/cpz1.919)
Westenberger A, Klein C (2020) Essential phenotypes of NOTCH2NLC-related repeat expansion disorder. Brain 143:5–8. https://doi.org/10.1093/brain/awz404. (PMID: 10.1093/brain/awz40431886491)
Yan Y, Cao L, Gu L, Xu C, Fang W, Tian J et al (2023) The clinical characteristics of neuronal intranuclear inclusion disease and its relation with inflammation. Neurol Sci. https://doi.org/10.1007/s10072-023-06822-9. (PMID: 10.1007/s10072-023-06822-938146011)
Yang H, Hu HY (2016) Sequestration of cellular interacting partners by protein aggregates: implication in a loss-of-function pathology. FEBS J 283:3705–3717. https://doi.org/10.1111/febs.13722. (PMID: 10.1111/febs.1372227016044)
Yoshii D, Ayaki T, Wada T, Ozaki A, Yamamoto T, Miyagi Y et al (2022) An autopsy case of adult-onset neuronal intranuclear inclusion disease with perivascular preservation in cerebral white matter. Neuropathology 42:66–73. https://doi.org/10.1111/neup.12778. (PMID: 10.1111/neup.1277834954850)
Yu J, Deng J, Guo X, Shan J, Luan X, Cao L et al (2021) The GGC repeat expansion in NOTCH2NLC is associated with oculopharyngodistal myopathy type 3. Brain. https://doi.org/10.1093/brain/awab077. (PMID: 10.1093/brain/awab077341564378634081)
Yu J, Liufu T, Zheng Y, Xu J, Meng L, Zhang W et al (2022) CGG repeat expansion in NOTCH2NLC causes mitochondrial dysfunction and progressive neurodegeneration in Drosophila model. Proc Natl Acad Sci USA 119:e2208649119. https://doi.org/10.1073/pnas.2208649119. (PMID: 10.1073/pnas.2208649119361912309565157)
Yuan Y, Liu Z, Hou X, Li W, Ni J, Huang L et al (2020) Identification of GGC repeat expansion in the NOTCH2NLC gene in amyotrophic lateral sclerosis. Neurology 95:e3394–e3405. https://doi.org/10.1212/wnl.0000000000010945. (PMID: 10.1212/wnl.000000000001094532989102)
Zhong S, Lian Y, Luo W, Luo R, Wu X, Ji J et al (2021) Upstream open reading frame with NOTCH2NLC GGC expansion generates polyglycine aggregates and disrupts nucleocytoplasmic transport: implications for polyglycine diseases. Acta Neuropathol 142:1003–1023. https://doi.org/10.1007/s00401-021-02375-3. (PMID: 10.1007/s00401-021-02375-334694469)
Zhou ZD, Jankovic J, Ashizawa T, Tan EK (2022) Neurodegenerative diseases associated with non-coding CGG tandem repeat expansions. Nat Rev Neurol 18:145–157. https://doi.org/10.1038/s41582-021-00612-7. (PMID: 10.1038/s41582-021-00612-735022573)
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10:1523. https://doi.org/10.1038/s41467-019-09234-6. (PMID: 10.1038/s41467-019-09234-6309443136447622)
معلومات مُعتمدة: 82301603 National Natural Science Foundation of China; 82271499 National Natural Science Foundation of China; 2023TQ0078 China Postdoctoral Science Foundation
فهرسة مساهمة: Keywords: 18-kD translocator protein; Microglia; Neurodegeneration; Neuronal intranuclear inclusion disease; Polyglycine
SCR Disease Name: Neuronal intranuclear inclusion disease
تواريخ الأحداث: Date Created: 20240816 Date Completed: 20240816 Latest Revision: 20240816
رمز التحديث: 20240816
DOI: 10.1007/s00401-024-02776-0
PMID: 39150562
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-0533
DOI:10.1007/s00401-024-02776-0