دورية أكاديمية

Microbial communities and denitrification mechanisms of pyrite autotrophic denitrification coupled with three-dimensional biofilm electrode reactor.

التفاصيل البيبلوغرافية
العنوان: Microbial communities and denitrification mechanisms of pyrite autotrophic denitrification coupled with three-dimensional biofilm electrode reactor.
المؤلفون: Tan S; School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China., Huang Y; School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China., Yang H; School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China., Zhang S; School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China., Tang X; School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China.
المصدر: Water environment research : a research publication of the Water Environment Federation [Water Environ Res] 2024 Aug; Vol. 96 (8), pp. e11107.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Subscription Services on behalf of The Water Environment Foundation Country of Publication: United States NLM ID: 9886167 Publication Model: Print Cited Medium: Internet ISSN: 1554-7531 (Electronic) Linking ISSN: 10614303 NLM ISO Abbreviation: Water Environ Res Subsets: MEDLINE
أسماء مطبوعة: Publication: Hoboken, NJ : Wiley Subscription Services on behalf of The Water Environment Foundation
Original Publication: Alexandria, VA : The Federation, c1992-
مواضيع طبية MeSH: Denitrification* , Biofilms* , Bioreactors* , Electrodes* , Sulfides*/metabolism , Sulfides*/chemistry, Autotrophic Processes ; Iron/metabolism ; Bacteria/metabolism ; Bacteria/classification ; Bacteria/genetics ; Nitrates/metabolism ; Microbiota
مستخلص: Denitrification is of great significance for low C/N wastewater treatment. In this study, pyrite autotrophic denitrification (PAD) was coupled with a three-dimensional biofilm electrode reactor (BER) to enhance denitrification. The effect of current on denitrification was extensively studied. The nitrate removal of the PAD-BER increased by 14.90% and 74.64% compared to the BER and the PAD, respectively. In addition, the electron utilization, extracellular polymeric substances secretion, and denitrification enzyme activity (NaR and NiR) were enhanced in the PAD-BER. The microbial communities study displayed that Dokdonella, Hydrogenophaga, Nitrospira, and Terrimonas became the main genera for denitrification. Compared with the PAD and the BER, the abundance of the key denitrification genes narG, nirK, nirS, and nosZ were all boosted in the PAD-BER. This study indicated that the enhanced autotrophic denitrifiers and denitrification genes were responsible for the improved denitrification in the PAD-BER. PRACTITIONER POINTS: PAD-BER displayed higher nitrate removal, EPS, NAR, and NIR activity. The three types of denitrification (HD, HAD, and PAD) and their contribution percentage in the PAD-BER were analyzed. HAD was dominant among the three denitrification processes in PAD-BER. Microbial community composition and key denitrification genes were tested to reveal the denitrification mechanisms.
(© 2024 Water Environment Federation.)
References: Bi, Z., Zhang, Q., Xu, X., Yuan, Y., Ren, N., Lee, D. J., & Chen, C. (2022). Perspective on inorganic electron donor‐mediated biological denitrification process for low C/N wastewaters. Bioresource Technology, 363, 127890. https://doi.org/10.1016/j.biortech.2022.127890.
Drees, K. P., Abbaszadegan, M., & Maier, R. M. (2003). Comparative electrochemical inactivation of bacteria and bacteriophage. Water Research, 37, 2291–2300. https://doi.org/10.1016/S0043-1354(03)00009-5.
Garcia‐Segura, S., Lanzarini‐Lopes, M., Hristovski, K., & Westerhoff, P. (2018). Electrocatalytic reduction of nitrate: Fundamentals to full‐scale water treatment applications. Applied Catalysis B: Environmental, 236, 546–568. https://doi.org/10.1016/j.apcatb.2018.05.041.
Hao, R., Meng, C., & Li, J. (2016). An integrated process of three‐dimensional biofilm‐electrode with sulfur autotrophic denitrification (3DBER‐SAD) for wastewater reclamation. Applied Microbiology and Biotechnology, 100, 7339–7348. https://doi.org/10.1007/s00253-016-7534-4.
Ji, G., Wang, R., Zhi, W., Liu, X., Kong, Y., & Tan, Y. (2012). Distribution patterns of denitrification functional genes and microbial floras in multimedia constructed wetlands. Ecological Engineering, 44, 179–188. https://doi.org/10.1016/j.ecoleng.2012.03.015.
Jiao, H., Huang, Z., Chen, Z., Wang, H., Liu, H., & Wei, Z. (2022). Lead removal in flue gas from sludge incineration by denitrification: Insights from metagenomics and metaproteomics. Ecotoxicology and Environmental Safety, 244, 114059. https://doi.org/10.1016/j.ecoenv.2022.114059.
Katipoglu‐Yazan, T., Ubay Cokgor, E., Insel, G., & Orhon, D. (2012). Is ammonification the rate limiting step for nitrification kinetics? Bioresource Technology, 114, 117–125. https://doi.org/10.1016/j.biortech.2012.03.017.
Krishna Mohan, T. V., Nancharaiah, Y. V., Venugopalan, V. P., & Satya Sai, P. M. (2016). Effect of C/N ratio on denitrification of high‐strength nitrate wastewater in anoxic granular sludge sequencing batch reactors. Ecological Engineering, 91, 441–448. https://doi.org/10.1016/j.ecoleng.2016.02.033.
Kuypers, M. M. M., Marchant, H. K., & Kartal, B. (2018). The microbial nitrogen‐cycling network. Nature Reviews Microbiology, 16, 263–276. https://doi.org/10.1038/nrmicro.2018.9.
Li, M., Duan, R., Hao, W., Li, Q., Arslan, M., Liu, P., Qi, X., Huang, X., El‐Din, M. G., & Liang, P. (2020). High‐rate nitrogen removal from carbon limited wastewater using sulfur‐based constructed wetland: Impact of sulfur sources. Science of the Total Environment, 744, 140969. https://doi.org/10.1016/j.scitotenv.2020.140969.
Li, M., Duan, R., Hao, W., Li, Q., Liu, P., Qi, X., Huang, X., Shen, X., Lin, R., & Liang, P. (2021). Utilization of elemental sulfur in constructed wetlands amended with granular activated carbon for high‐rate nitrogen removal. Water Research, 195, 116996. https://doi.org/10.1016/j.watres.2021.116996.
Liang, D., He, W., Li, C., Wang, F., Crittenden, J. C., & Feng, Y. (2021). Remediation of nitrate contamination by membrane hydrogenotrophic denitrifying biofilm integrated in microbial electrolysis cell. Water Research, 188, 116498. https://doi.org/10.1016/j.watres.2020.116498.
Lin, X., Yin, H., Wang, L., Chen, Y., Zhao, F., Pu, Y., & Tang, X. (2023). Study of a three‐dimensional biofilm‐electrode reactor (3D‐BER) that combined heterotrophic and autotrophic denitrification (HAD) to remove nitrate from water. RSC Advances, 13, 14675–14684. https://doi.org/10.1039/D3RA01403G.
Liu, H., Chen, N., Feng, C., Tong, S., & Li, R. (2017). Impact of electro‐stimulation on denitrifying bacterial growth and analysis of bacterial growth kinetics using a modified Gompertz model in a bio‐electrochemical denitrification reactor. Bioresource Technology, 232, 344–353. https://doi.org/10.1016/j.biortech.2017.02.064.
Liu, T., Hu, Y. T., Chen, N., He, Q. C., & Feng, C. P. (2021). High redox potential promotes oxidation of pyrite under neutral conditions: Implications for optimizing pyrite autotrophic denitrification. Journal of Hazardous Materials, 416, 125844. https://doi.org/10.1016/j.jhazmat.2021.125844.
Mousavi, S., Ibrahim, S., Aroua, M. K., & Ghafari, S. (2012). Development of nitrate elimination by autohydrogenotrophic bacteria in bio‐electrochemical reactors—A review. Biochemical Engineering Journal, 67, 251–264. https://doi.org/10.1016/j.bej.2012.04.016.
Nguyen, V. K., Park, Y., Yang, H., Yu, J., & Lee, T. (2016). Effect of the cathode potential and sulfate ions on nitrate reduction in a microbial electrochemical denitrification system. Journal of Industrial Microbiology and Biotechnology, 43, 783–793. https://doi.org/10.1007/s10295-016-1762-6.
Peel, J. W., Reddy, K. J., Sullivan, B. P., & Bowen, J. M. (2003). Electrocatalytic reduction of nitrate in water. Water Research, 37, 2512–2519. https://doi.org/10.1016/S0043-1354(03)00008-3.
Ren, Z., Guo, H., Jin, H., Wang, Y., Zhang, G., Zhou, J., Qu, G., Sun, Q., & Wang, T. (2023). P, N, and C‐related functional genes in SBR system promoted antibiotics resistance gene transmission under polystyrene microplastics stress. Water Research, 235, 119884. https://doi.org/10.1016/j.watres.2023.119884.
Rezvani, F., Sarrafzadeh, M. H., Ebrahimi, S., & Oh, H. M. (2019). Nitrate removal from drinking water with a focus on biological methods: A review. Environmental Science and Pollution Research, 26, 1124–1141. https://doi.org/10.1007/s11356-017-9185-0.
Shi, Y., Han, B., & Zeng, Y. (2020). Simulating policy interventions in the interfirm diffusion of low‐carbon technologies: An agent‐based evolutionary game model. Journal of Cleaner Production, 250, 119449. https://doi.org/10.1016/j.jclepro.2019.119449.
Smith Cindy, J., Nedwell David, B., Dong Liang, F., & Osborn, A. M. (2007). Diversity and abundance of nitrate reductase genes (narG and napA), nitrite reductase genes (nirS and nrfA), and their transcripts in estuarine sediments. Applied and Environmental Microbiology, 73, 3612–3622. https://doi.org/10.1128/AEM.02894-06.
Su, D., & Chen, Y. (2022). Advanced bioelectrochemical system for nitrogen removal in wastewater. Chemosphere, 292, 133206. https://doi.org/10.1016/j.chemosphere.2021.133206.
Sun, Q., & Zhu, G. (2022). Deciphering the effects of antibiotics on nitrogen removal and bacterial communities of autotrophic denitrification systems in a three‐dimensional biofilm electrode reactor. Environmental Pollution, 315, 120476. https://doi.org/10.1016/j.envpol.2022.120476.
Tang, Q., Sheng, Y., Li, C., Wang, W., & Liu, X. (2020). Simultaneous removal of nitrate and sulfate using an up‐flow three‐dimensional biofilm electrode reactor: Performance and microbial response. Bioresource Technology, 318, 124096. https://doi.org/10.1016/j.biortech.2020.124096.
Tong, S., Rodriguez‐Gonzalez, L. C., Feng, C., & Ergas, S. J. (2017). Comparison of particulate pyrite autotrophic denitrification (PPAD) and sulfur oxidizing denitrification (SOD) for treatment of nitrified wastewater. Water Science & Technology, 75, 239–246. https://doi.org/10.2166/wst.2016.502.
Wang, D., Li, T., Huang, K., He, X., & Zhang, X.‐X. (2019). Roles and correlations of functional bacteria and genes in the start‐up of simultaneous anammox and denitrification system for enhanced nitrogen removal. Science of the Total Environment, 655, 1355–1363. https://doi.org/10.1016/j.scitotenv.2018.11.321.
Wang, H., Lyu, W., Hu, X., Chen, L., He, Q., Zhang, W., Song, J., & Wu, J. (2019). Effects of current intensities on the performances and microbial communities in a combined bio‐electrochemical and sulfur autotrophic denitrification (CBSAD) system. Science of the Total Environment, 694, 133775. https://doi.org/10.1016/j.scitotenv.2019.133775.
Wang, S. Y., Li, J. C., Wang, W. J., Zhou, C. Y., Chi, Y. F., Wang, J. H., Li, Y. C., & Zhang, Q. B. (2023). An overview of recent advances and future prospects of three‐dimensional biofilm electrode reactors (3D‐BERs). Journal of Environmental Management, 342, 118192. https://doi.org/10.1016/j.jenvman.2023.118192.
Wang, X., Chen, T., Gao, C., Xie, Y., & Zhang, A. (2022). Use of extracellular polymeric substances as natural redox mediators to enhance denitrification performance by accelerating electron transfer and carbon source metabolism. Bioresource Technology, 345, 126522. https://doi.org/10.1016/j.biortech.2021.126522.
Wang, X., Wang, S., Xue, T., Li, B., Dai, X., & Peng, Y. (2015). Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification‐endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage. Water Research, 77, 191–200. https://doi.org/10.1016/j.watres.2015.03.019.
Ward, M. H., Jones, R. R., Brender, J. D., de Kok, T. M., Weyer, P. J., Nolan, B. T., Villanueva, C. M., & van Breda, S. G. (2018). Drinking water nitrate and human health: An updated review. International Journal of Environmental Research and Public Health, 15, 1557. https://doi.org/10.3390/ijerph15071557.
Wu, Z. Y., Xu, J., Wu, L., & Ni, B. J. (2022). Three‐dimensional biofilm electrode reactors (3D‐BERs) for wastewater treatment. Bioresource Technology, 344, 126274. https://doi.org/10.1016/j.biortech.2021.126274.
Xia, Y., Chen, H., Zhao, J., & Li, W. (2019). Shifts of biomass and microbial community structure in response to current densities in a biofilm electrode reactor for NOx removal. Energy & Fuels, 33, 5415–5421. https://doi.org/10.1021/acs.energyfuels.9b00806.
Xiao, Z., Wang, D., Xia, T., Wu, H., & Chen, D. (2021). Effect of current density on denitrification performance and microbial community spectra in a pyrite‐oxidizing bioelectrochemical system (PBES). Journal of Water Process Engineering, 42, 102110. https://doi.org/10.1016/j.jwpe.2021.102110.
Xiao, Z., Wang, W., Chen, D., Yu, Y., & Huang, H. (2019). pH control of an upflow pyrite‐oxidizing denitrifying bioreactor via electrohydrogenesis. Bioresource Technology, 281, 41–47. https://doi.org/10.1016/j.biortech.2019.02.069.
Xu, D., Li, Y., Yin, L., Ji, Y., Niu, J., & Yu, Y. (2018). Electrochemical removal of nitrate in industrial wastewater. Frontiers of Environmental Science & Engineering, 12, 9. https://doi.org/10.1007/s11783-018-1033-z.
Xu, H., Ma, Y., Chen, J., Zhang, W. X., & Yang, J. (2022). Electrocatalytic reduction of nitrate—A step towards a sustainable nitrogen cycle. Chemical Society Reviews, 51, 2710–2758. https://doi.org/10.1039/D1CS00857A.
Yang, C., Liu, T., Chen, N., Tong, S., Deng, Y., Xue, L., Hu, W., & Feng, C. (2021). Performance and mechanism of a novel woodchip embedded biofilm electrochemical reactor (WBER) for nitrate‐contaminated wastewater treatment. Chemosphere, 276, 130250. https://doi.org/10.1016/j.chemosphere.2021.130250.
Yao, S., Liu, L., Zhang, S., & Tang, X. (2022). Nitrate removal from groundwater by heterotrophic and electro‐autotrophic denitrification. Water, 14, 1759. https://doi.org/10.3390/w14111759.
Yin, H., Lin, X., Zhao, F., Pu, Y., Chen, Y., & Tang, X. (2022). Nano‐alpha‐Fe(2) O(3) for enhanced denitrification in a heterotrophic/biofilm‐electrode autotrophic denitrification reactor. Water Environment Research, 94, e10814. https://doi.org/10.1002/wer.10814.
Zhao, B., Sun, Z., & Liu, Y. (2022). An overview of in‐situ remediation for nitrate in groundwater. Science of the Total Environment, 804, 149981. https://doi.org/10.1016/j.scitotenv.2021.149981.
Zhao, L., Xue, L., Wang, L., Liu, C., & Li, Y. (2022). Simultaneous heterotrophic and FeS(2)‐based ferrous autotrophic denitrification process for low‐C/N ratio wastewater treatment: Nitrate removal performance and microbial community analysis. Science of the Total Environment, 829, 154682. https://doi.org/10.1016/j.scitotenv.2022.154682.
Zhou, C. S., Wu, J. W., Ma, W. L., Liu, B. F., Xing, D. F., Yang, S. S., & Cao, G. L. (2022). Responses of nitrogen removal under microplastics versus nanoplastics stress in SBR: Toxicity, microbial community and functional genes. Journal of Hazardous Materials, 432, 128715. https://doi.org/10.1016/j.jhazmat.2022.128715.
معلومات مُعتمدة: 21806126 National Natural Science Foundation of China; WUT.2019IVB031 Fundamental Research Funds for the Central Universities
فهرسة مساهمة: Keywords: biofilm electrode reactor; denitrification gene; denitrification mechanisms; microbial communities; pyrite autotrophic denitrification
المشرفين على المادة: 132N09W4PR (pyrite)
0 (Sulfides)
E1UOL152H7 (Iron)
0 (Nitrates)
تواريخ الأحداث: Date Created: 20240819 Date Completed: 20240819 Latest Revision: 20240819
رمز التحديث: 20240819
DOI: 10.1002/wer.11107
PMID: 39155705
قاعدة البيانات: MEDLINE
الوصف
تدمد:1554-7531
DOI:10.1002/wer.11107