دورية أكاديمية

Genetics and ontogeny are key factors influencing thermal resilience in a culturally and economically important bivalve.

التفاصيل البيبلوغرافية
العنوان: Genetics and ontogeny are key factors influencing thermal resilience in a culturally and economically important bivalve.
المؤلفون: Delorme NJ; Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand. natali.delorme@cawthron.org.nz., King N; Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand., Cervantes-Loreto A; Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand., South PM; Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand., Baettig CG; Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand., Zamora LN; Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand., Knight BR; Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand., Ericson JA; Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand., Smith KF; Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand., Ragg NLC; Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand.
المصدر: Scientific reports [Sci Rep] 2024 Aug 19; Vol. 14 (1), pp. 19130. Date of Electronic Publication: 2024 Aug 19.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Perna*/genetics , Perna*/physiology, Animals ; HSP70 Heat-Shock Proteins/genetics ; HSP70 Heat-Shock Proteins/metabolism ; Thermotolerance/genetics ; Bivalvia/genetics ; Bivalvia/physiology ; New Zealand ; Hot Temperature ; Gills/metabolism
مستخلص: Increasing seawater temperatures coupled with more intense and frequent heatwaves pose an increasing threat to marine species. In this study, the New Zealand green-lipped mussel, Perna canaliculus, was used to investigate the effect of genetics and ontogeny on thermal resilience. The culturally and economically significant mussel P. canaliculus (Gmelin, 1971) has been selectively-bred in New Zealand for two decades, making it a unique biological resource to investigate genetic interactions in a temperate bivalve species. Six selectively-bred full sibling families and four different ages, from early juveniles (6, 8, 10 weeks post-fertilisation) to sub-adults (52 weeks post-fertilisation), were used for experimentation. At each age, each family was exposed to a three-hour heat challenge, followed by recovery, and survival assessments. The shell lengths of live and dead juvenile mussels were also measured. Gill tissue samples from sub-adults were collected after the thermal challenge to quantify the 70 kDa heat shock protein gene (hsp70). Results showed that genetics, ontogeny and size influence thermal resilience in P. canaliculus, with LT 50 values ranging between 31.3 and 34.4 °C for all studied families and ages. Juveniles showed greater thermotolerance compared to sub-adults, while the largest individuals within each family/age class tended to be more heat sensitive than their siblings. Sub-adults differentially upregulated hsp70 in a pattern that correlated with net family survival following heat challenge, reinforcing the perceived role of inducible HSP70 protein in molluscs. This study provides insights into the complex interactions of age and genotype in determining heat tolerance of a key mussel species. As marine temperatures increase, equally complex selection pressure responses may therefore occur. Future research should focus on transcriptomic and genomic approaches for key species such as P. canaliculus to further understand and predict the effect of genetic variation and ontogeny on their survival in the context of climate change.
(© 2024. The Author(s).)
References: IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2022).
Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324. https://doi.org/10.1038/s41467-018-03732-9 (2018). (PMID: 10.1038/s41467-018-03732-9296364825893591)
Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 1–12. https://doi.org/10.3389/fmars.2019.00734 (2019). (PMID: 10.3389/fmars.2019.00734)
Schiel, D. R. The other 93%: trophic cascades, stressors and managing coastlines in non-marine protected areas. NZ J. Mar. Freshwat. Res. 47, 374–391 (2013). (PMID: 10.1080/00288330.2013.810161)
Schiel, D. R., Lilley, S. A., South, P. M. & Coggins, J. H. J. Decadal changes in sea surface temperature, wave forces and intertidal structure in New Zealand. Mar. Ecol. Prog. Ser. 548, 77–95 (2016). (PMID: 10.3354/meps11671)
Shears, N. T. & Bowen, M. M. Half a century of coastal temperature records reveal complex warming trends in western boundary currents. Sci. Rep. 7, 14527. https://doi.org/10.1038/s41598-017-14944-2 (2017). (PMID: 10.1038/s41598-017-14944-2291094455674067)
Sutton, P. J. H. & Bowen, M. Ocean temperature change around New Zealand over the last 36 years. NZ J. Mar. Freshwat. Res. 53, 305–326. https://doi.org/10.1080/00288330.2018.1562945 (2019). (PMID: 10.1080/00288330.2018.1562945)
Salinger, M. J. et al. The unprecedented coupled ocean-atmosphere summer heatwave in the New Zealand region 2017/18: drivers, mechanisms and impacts. Environ. Res. Lett. 14, 044023. https://doi.org/10.1088/1748-9326/ab012a (2019). (PMID: 10.1088/1748-9326/ab012a)
Salinger, M. J. et al. Unparalleled coupled ocean-atmosphere summer heatwaves in the New Zealand region: drivers, mechanisms and impacts. Clim. Change 162, 485–506 (2020). (PMID: 10.1007/s10584-020-02730-5)
Behrens, E. et al. Projections of future marine heatwaves for the oceans around New Zealand using New Zealand’s earth system model. Front. Clim. 4, 798287. https://doi.org/10.3389/fclim.2022.798287 (2022). (PMID: 10.3389/fclim.2022.798287)
Hill, R. W. Animal Physiology 2nd edn. (Sinauer Associates, 2008).
Schmidt-Nielsen, K. Animal Physiology (Cambridge University Press, 1997). (PMID: 10.1017/9780511801822)
Monaco, C. J. & Helmuth, B. Tipping points, thresholds and the keystone role of physiology in marine climate change research. Adv. Mar. Biol. 60, 123. https://doi.org/10.1016/b978-0-12-385529-9.00003-2 (2011). (PMID: 10.1016/b978-0-12-385529-9.00003-221962751)
Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008). (PMID: 10.1126/science.116315618974339)
Sokolova, I. M. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Compar. Biol. 53, 597–608. https://doi.org/10.1093/icb/ict028 (2013). (PMID: 10.1093/icb/ict028)
Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G. & Sukhotin, A. A. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 79, 1–15. https://doi.org/10.1016/j.marenvres.2012.04.003 (2012). (PMID: 10.1016/j.marenvres.2012.04.00322622075)
Willmer, P. Environmental Physiology of Animals (Blackwell Publisher, 1999).
Pörtner, H. O. Climate variations and the physiological basis of temperature dependent biogeography: Systemic to molecular hierarchy of thermal tolerance in animals. Compar. Biochem. Physiol. Part A 132, 739–761. https://doi.org/10.1016/s1095-6433(02)00045-4 (2002). (PMID: 10.1016/s1095-6433(02)00045-4)
Pörtner, H. O., Peck, L. & Somero, G. Thermal limits and adaptation in marine antarctic ectotherms: an integrative view. Philos. Trans. Biol. Sci. 362, 2233–2258. https://doi.org/10.2307/20210022 (2007). (PMID: 10.2307/20210022)
Ibarrola, I., Hilton, Z. & Ragg, N. L. Physiological basis of inter-population, inter-familiar and intra-familiar differences in growth rate in the green-lipped mussel Perna canaliculus. Aquaculture 479, 544–555 (2017). (PMID: 10.1016/j.aquaculture.2017.06.031)
Ericson, J. A. et al. Differential responses of selectively bred mussels (Perna canaliculus) to heat stress -survival, immunology, gene expression and microbiome diversity. Front. Physiol. https://doi.org/10.3389/fphys.2023.1265879 (2023). (PMID: 10.3389/fphys.2023.126587938425477)
Evgen’ev, M. B., Garbuz, D. G. & Zatsepina, O. G. Heat Shock Proteins and Whole Body Adaptation to Extreme Environments (Springer, 2014). (PMID: 10.1007/978-94-017-9235-6)
Sanders, B. M. Stress proteins in aquatic organisms: An environmental perspective. Critic. Rev. Toxicol. 23, 49–75. https://doi.org/10.3109/10408449309104074 (1993). (PMID: 10.3109/10408449309104074)
Sørensen, J. G., Kristensen, T. N. & Loeschcke, V. The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 6, 1025–1037. https://doi.org/10.1046/j.1461-0248.2003.00528.x (2003). (PMID: 10.1046/j.1461-0248.2003.00528.x)
Oksala, N. K. J. et al. Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress. Redox Biol. 3, 25–28. https://doi.org/10.1016/j.redox.2014.10.003 (2014). (PMID: 10.1016/j.redox.2014.10.003254620624225528)
Chen, B., Feder, M. E. & Kang, L. Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Mol. Ecol. 27, 3040–3054. https://doi.org/10.1111/mec.14769 (2018). (PMID: 10.1111/mec.1476929920826)
Feder, M. E. & Hofmann, G. E. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282. https://doi.org/10.1146/annurev.physiol.61.1.243 (1999). (PMID: 10.1146/annurev.physiol.61.1.24310099689)
Parsell, D. A. & Lindquist, S. The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annu. Rev. Genetics 27, 437 (1993). (PMID: 10.1146/annurev.ge.27.120193.002253)
Tomanek, L. & Somero, G. N. Evolutionary and acclimation- induced variation in the heat- shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: Implications for limits of thermotolerance and biogeography. J. Exp. Biol. 202, 2925–2936 (1999). (PMID: 10.1242/jeb.202.21.292510518474)
Jost, J. A., Podolski, S. M. & Frederich, M. Enhancing thermal tolerance by eliminating the pejus range: A comparative study with three decapod crustaceans. Mar. Ecol. Progr. Ser. 444, 263–274 (2012). (PMID: 10.3354/meps09379)
Bayne, B. L. Primary and secondary settlement in Mytilus edulis L. (Mollusca). J. Anim. Ecol. 33, 513–523 (1964). (PMID: 10.2307/2569)
Jeffs, A. G., Holland, R. C., Hooker, S. H. & Hayden, B. J. Overview and bibliography of research on the greenshell mussel, Perna canaliculus, from New Zealand waters. J. Shellfish Res. 18, 347–360 (1999).
McLeod, I. M., Parsons, D. M., Morrison, M. A., Van Dijken, S. G. & Taylor, R. B. Mussel reefs on soft sediments: a severely reduced but important habitat for macroinvertebrates and fishes in New Zealand. New Zealand J. Mar. Freshwat. Res. 48, 48–59. https://doi.org/10.1080/00288330.2013.834831 (2014). (PMID: 10.1080/00288330.2013.834831)
Menge, B. A., Daley, B. A., Sanford, E., Dahlhoff, E. P. & Lubchenco, J. Mussel zonation in New Zealand: An integrative eco-physiological approach. Mar. Ecol. Progr. Ser. 345, 129–140 (2007). (PMID: 10.3354/meps06951)
Chaput, R. et al. Identifying the source populations supplying a vital economic marine species for the New Zealand aquaculture industry. Sci. Rep. 13, 9344 (2023). (PMID: 10.1038/s41598-023-36224-y3729118010250383)
Camara, M. D. & Symonds, J. E. Genetic improvement of New Zealand aquaculture species: Programmes, progress and prospects. New Zealand J. Mar. Freshwat. Res. 48, 466–491. https://doi.org/10.1080/00288330.2014.932291 (2014). (PMID: 10.1080/00288330.2014.932291)
Liu, J. et al. Genomic selection applications can improve the environmental performance of aquatics: A case study on the heat tolerance of abalone. Evolut. Appl. 15, 992–1001. https://doi.org/10.1111/eva.13388 (2022). (PMID: 10.1111/eva.13388)
Bell, G. & Collins, S. Adaptation, extinction and global change. Evolut. Appl. 1, 3–16. https://doi.org/10.1111/j.1752-4571.2007.00011.x (2008). (PMID: 10.1111/j.1752-4571.2007.00011.x)
Kelly, M. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos. Trans R. Soc. B Biol. Sci. 374, 20180176. https://doi.org/10.1098/rstb.2018.0176 (2019). (PMID: 10.1098/rstb.2018.0176)
Dunphy, B. J., Ragg, N. L. C. & Collings, M. G. Latitudinal comparison of thermotolerance and HSP70 production in F2 larvae of the greenshell mussel (Perna canaliculus). J. Exp. Biol. 216, 1202–1209. https://doi.org/10.1242/jeb.076729 (2013). (PMID: 10.1242/jeb.07672923239885)
Dunphy, B. J., Watts, E. & Ragg, N. L. C. Identifying thermally-stressed adult green-lipped mussels (Perna canaliculus Gmelin, 1791) via metabolomic profiling. Am. Malacol. Bull. 33, 127–135. https://doi.org/10.4003/006.033.0110 (2015). (PMID: 10.4003/006.033.0110)
Ragg, N. L. C., King, N., Watts, E. & Morrish, J. Optimising the delivery of the key dietary diatom Chaetoceros calcitrans to intensively cultured Greenshell™ mussel larvae Perna canaliculus. Aquaculture 306, 270–280. https://doi.org/10.1016/j.aquaculture.2010.05.010 (2010). (PMID: 10.1016/j.aquaculture.2010.05.010)
Delorme, N. J. & Sewell, M. A. Temperature limits to early development of the New Zealand sea urchin Evechinus chloroticus (Valenciennes, 1846). J. Therm. Biol. 38, 218–224. https://doi.org/10.1016/j.jtherbio.2013.02.007 (2013). (PMID: 10.1016/j.jtherbio.2013.02.007)
Sewell, M. A. & Young, C. M. Temperature limits to fertilization and early development in the tropical sea urchin Echinometra lucunter. J. Exp. Mar. Biol. Ecol. 236, 291–305. https://doi.org/10.1016/S0022-0981(98)00210-X (1999). (PMID: 10.1016/S0022-0981(98)00210-X)
Webb, S. C. & Heasman, K. G. Evaluation of fast green uptake as a simple fitness test for spat of Perna canaliculus (Gmelin, 1791). Aquaculture 252, 305–316. https://doi.org/10.1016/j.aquaculture.2005.07.006 (2006). (PMID: 10.1016/j.aquaculture.2005.07.006)
Broekhuizen, N., Plew, D. R., Pinkerton, M. H. & Gall, M. G. Sea temperature rise over the period 2002–2020 in Pelorus Sound, New Zealand – with possible implications for the aquaculture industry. New Zealand J. Mar. Freshwat. Res. 55, 46–64. https://doi.org/10.1080/00288330.2020.1868539 (2021). (PMID: 10.1080/00288330.2020.1868539)
Copedo, J. S. et al. Histopathological changes in the greenshell mussel, Perna canaliculus, in response to chronic thermal stress. J. Therm. Biol. 117, 103699. https://doi.org/10.1016/j.jtherbio.2023.103699 (2023). (PMID: 10.1016/j.jtherbio.2023.10369937708787)
Alfaro, A. C., Jeffs, A. G. & Hooker, S. H. Reproductive behavior of the green-lipped mussel, Perna canaliculus, in northern New Zealand. Bull. Mar. Sci. 69, 1095–1108 (2001).
Howard, D. W. Histological techniques for marine bivalve mollusks and crustaceans. Vol. 5 (NOAA, National Ocean Service, National Centers for Coastal Ocean Service, Center for Coastal Environmental Helath and Biomolecular Research, 2004).
Dunphy, B. J., Ruggiero, K., Zamora, L. N. & Ragg, N. L. C. Metabolomic analysis of heat-hardening in adult green-lipped mussel (Perna canaliculus): A key role for succinic acid and the GABAergic synapse pathway. J. Therm. Biol. 74, 37–46. https://doi.org/10.1016/j.jtherbio.2018.03.006 (2018). (PMID: 10.1016/j.jtherbio.2018.03.00629801648)
Webb, S. C. Aspects of stress with particular reference to mytilid mussels and their parasites PhD Thesis thesis, University of Cape Town, (1999).
Zamora, L. N. et al. Emersion survival manipulation in Greenshell™ mussels (Perna canaliculus): Implications for the extension of live mussels’ shelf-life. Aquaculture 500, 597–606. https://doi.org/10.1016/j.aquaculture.2018.10.057 (2019). (PMID: 10.1016/j.aquaculture.2018.10.057)
Baettig, C. G. et al. Development and validation of molecular biomarkers for the green-lipped mussel (Perna canaliculus). New Zealand J. Mar. Freshwat. Res., 1–20 (2023).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Statist. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015). (PMID: 10.18637/jss.v067.i01)
R Core Team, R. (R Foundation for Statistical Computing, Vienna, Austria, 2024).
Bürkner, P. An R package for Bayesian multilevel models using Stan. J. Statist. Softw. 80, 1–28 (2017). (PMID: 10.18637/jss.v080.i01)
Kaplan, E. L. & Meier, P. Nonparametric estimation from incomplete observations. J. Am. Statist. Assoc. 53, 457–481. https://doi.org/10.2307/2281868 (1958). (PMID: 10.2307/2281868)
Therneau, T. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model (Springer, 2000). (PMID: 10.1007/978-1-4757-3294-8)
Cox, D. R. Regression nodels and life-tables. J. R. Statist. Soc. Ser. B 34, 187–202. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x (1972). (PMID: 10.1111/j.2517-6161.1972.tb00899.x)
Schoenfeld, D. Partial residuals for the proportional hazards regression model. Biometrika 69, 239–241. https://doi.org/10.1093/biomet/69.1.239 (1982). (PMID: 10.1093/biomet/69.1.239)
Underwood, A. J. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance (Cambridge University Press, 1996). (PMID: 10.1017/CBO9780511806407)
Gelman, A., Goodrich, B., Gabry, J. & Vehtari, A. R-Squared for Bayesian Regression Models (The American Statistician, 2019). (PMID: 10.1080/00031305.2018.1549100)
Pottier, P. et al. Developmental plasticity in thermal tolerance: Ontogenetic variation, persistence, and future directions. Ecol. Lett. 25, 2245–2268. https://doi.org/10.1111/ele.14083 (2022). (PMID: 10.1111/ele.14083360067709804923)
Miller, N. A., Paganini, A. W. & Stillman, J. H. Differential thermal tolerance and energetic trajectories during ontogeny in porcelain crabs, genus Petrolisthes. J. Therm. Biol. 38, 79–85. https://doi.org/10.1016/j.jtherbio.2012.11.005 (2013). (PMID: 10.1016/j.jtherbio.2012.11.005)
Hamilton, H. J. & Gosselin, L. A. Ontogenetic shifts and interspecies variation in tolerance to desiccation and heat at the early benthic phase of six intertidal invertebrates. Mar. Ecol. Progr. Ser. 634, 15–28 (2020). (PMID: 10.3354/meps13189)
Peck, L. S., Souster, T. & Clark, M. S. Juveniles are more resistant to warming than adults in 4 species of Antarctic marine invertebrates. PLoS One 8, e66033. https://doi.org/10.1371/journal.pone.0066033 (2013). (PMID: 10.1371/journal.pone.0066033238403933694089)
Atkinson, D., Morley, S. A. & Hughes, R. N. From cells to colonies: At what levels of body organization does the ‘temperature-size rule’ apply?. Evol. Dev. 8, 202–214 (2006). (PMID: 10.1111/j.1525-142X.2006.00090.x16509898)
Pörtner, H. Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001). (PMID: 10.1007/s00114010021611480701)
Rubalcaba, J. G., Verberk, W., Hendriks, A. J., Saris, B. & Woods, H. A. Oxygen limitation may affect the temperature and size dependence of metabolism in aquatic ectotherms. Proc. Natl. Acad. Sci. USA 117, 31963–31968. https://doi.org/10.1073/pnas.2003292117 (2020). (PMID: 10.1073/pnas.2003292117332575447749359)
Fernandes, J. F., Calado, R., Jerónimo, D. & Madeira, D. Thermal tolerance limits and physiological traits as indicators of Hediste diversicolor’s acclimation capacity to global and local change drivers. J. Therm. Biol. 114, 103577. https://doi.org/10.1016/j.jtherbio.2023.103577 (2023). (PMID: 10.1016/j.jtherbio.2023.10357737263039)
Fernández-Reiriz, M. J., Irisarri, J. & Labarta, U. Flexibility of physiological traits underlying inter-individual growth differences in intertidal and subtidal mussels Mytilus galloprovincialis. PLoS One 11, e0148245. https://doi.org/10.1371/journal.pone.0148245 (2016). (PMID: 10.1371/journal.pone.0148245268493724743968)
Berg, J. M., Tymoczko, J. L., Gatto, G. J. & Stryer, L. Biochemistry 9th edn, 1208 (W. H. Freeman and Company, 2019).
Randall, D. J., Burggren, W. & French, K. Eckert animal physiology 5th edn. (W. H. Freeman, 2002).
Loft, S., Astrup, A., Buemann, B. & Poulsen, H. E. Oxidative DNA damage correlates with oxygen consumption in humans. FASEB J. 8, 534–537. https://doi.org/10.1096/fasebj.8.8.8181672 (1994). (PMID: 10.1096/fasebj.8.8.81816728181672)
Yang, S. & Lian, G. ROS and diseases: Role in metabolism and energy supply. Mol. Cell. Biochem. 467, 1–12. https://doi.org/10.1007/s11010-019-03667-9 (2020). (PMID: 10.1007/s11010-019-03667-931813106)
Han, Z. et al. Heritability estimates for gonadal development traits and their genetic correlations with growth and heat tolerance traits in the Fujian oyster Crassostrea angulata. Front. Mar. Sci. 9, 986441. https://doi.org/10.3389/fmars.2022.986441 (2022). (PMID: 10.3389/fmars.2022.986441)
Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. Nature 470, 479 (2011). (PMID: 10.1038/nature0967021350480)
Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Oliver & Boyd, 1996).
Evans, M. L., Neff, B. D. & Heath, D. D. Quantitative genetic and translocation experiments reveal genotype-by-environment effects on juvenile life-history traits in two populations of Chinook salmon (Oncorhynchus tshawytscha). J. Evol. Biol. 23, 687–698. https://doi.org/10.1111/j.1420-9101.2010.01934.x (2010). (PMID: 10.1111/j.1420-9101.2010.01934.x20102438)
Dong, Y. & Dong, S. Induced thermotolerance and expression of heat shock protein 70 in sea cucumber Apostichopus japonicus. Fish. Sci. 74, 573–578. https://doi.org/10.1111/j.1444-2906.2008.01560.x (2008). (PMID: 10.1111/j.1444-2906.2008.01560.x)
Aleng, N. A., Sung, Y. Y., MacRae, T. H. & Abd Wahid, M. E. Non-lethal heat shock of the Asian green mussel, Perna viridis, promotes Hsp70 synthesis, induces thermotolerance and protects against Vibrio infection. PLoS One 10, e0135603. https://doi.org/10.1371/journal.pone.0135603 (2015). (PMID: 10.1371/journal.pone.0135603262883194546054)
Valenzuela-Castillo, A., Sánchez-Paz, A., Castro-Longoria, R., López-Torres, M. & Grijalva-Chon, J. Hsp70 function and polymorphism, its implications for mollusk aquaculture: A review. Latin Am. J. Aquat. Res. 47, 224–231. https://doi.org/10.3856/vol47-issue2-fulltext-2 (2019). (PMID: 10.3856/vol47-issue2-fulltext-2)
Sung, Y. Y., Liew, H. J., Ambok Bolong, A. M., Abdul Wahid, M. E. & MacRae, T. H. The induction of Hsp70 synthesis by non-lethal heat shock confers thermotolerance and resistance to lethal ammonia stress in the common carp, Cyprinus carpio (Linn.). Aquac. Res. 45, 1706–1712 (2014). (PMID: 10.1111/are.12116)
Yusof, N. A. et al. Can heat shock protein 70 (HSP70) serve as biomarkers in Antarctica for future ocean acidification, warming and salinity stress?. Polar Biol. 45, 371–394. https://doi.org/10.1007/s00300-022-03006-7 (2022). (PMID: 10.1007/s00300-022-03006-7)
Bernabò, P., Rebecchi, L., Jousson, O., Martínez-Guitarte, J. L. & Lencioni, V. Thermotolerance and hsp70 heat shock response in the cold-stenothermal chironomid Pseudodiamesa branickii (NE Italy). Cell Stress Chaperones 16, 403–410. https://doi.org/10.1007/s12192-010-0251-5 (2011). (PMID: 10.1007/s12192-010-0251-521188662)
Negri, A. et al. Transcriptional response of the mussel Mytilus galloprovincialis (Lam.) following exposure to heat stress and copper. PLoS One 8, e66802. https://doi.org/10.1371/journal.pone.0066802 (2013). (PMID: 10.1371/journal.pone.0066802238255653692493)
Nielsen, M. B., Vogensen, T. K., Thyrring, J., Sørensen, J. G. & Sejr, M. K. Freshening increases the susceptibility to heat stress in intertidal mussels (Mytilus edulis) from the Arctic. J. Anim. Ecol. 90, 1515–1524. https://doi.org/10.1111/1365-2656.13472 (2021). (PMID: 10.1111/1365-2656.1347233713446)
Barrett, N. J. et al. Molecular responses to thermal and osmotic stress in arctic intertidal mussels (Mytilus edulis): The limits of resilience. Genes 13, 155. https://doi.org/10.3390/genes13010155 (2022). (PMID: 10.3390/genes13010155350524948774603)
Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, J. A. & Edwards, M. Reorganization of north Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694. https://doi.org/10.1126/science.1071329 (2002). (PMID: 10.1126/science.107132912040196)
Drinkwater, K. F. et al. On the processes linking climate to ecosystem changes. J. Mar. Syst. 79, 374–388. https://doi.org/10.1016/j.jmarsys.2008.12.014 (2010). (PMID: 10.1016/j.jmarsys.2008.12.014)
Chevaldonne, P. & Lejeusne, C. Regional warming-induced species shift in north-west Mediterranean marine caves. Ecol. Lett. 6, 371–379 (2003). (PMID: 10.1046/j.1461-0248.2003.00439.x)
Antao, L. H. et al. Temperature-related biodiversity change across temperate marine and terrestrial systems. Nat. Ecol. Evol. 4, 927–933 (2020). (PMID: 10.1038/s41559-020-1185-732367031)
Seuront, L., Nicastro, K. R., Zardi, G. I. & Goberville, E. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci. Rep. 9, 17498. https://doi.org/10.1038/s41598-019-53580-w (2019). (PMID: 10.1038/s41598-019-53580-w317679546877631)
Ericson, J. A. et al. Chronic heat stress as a predisposing factor in summer mortality of mussels Perna canaliculus. Aquaculture 564, 738986. https://doi.org/10.1016/j.aquaculture.2022.738986 (2023). (PMID: 10.1016/j.aquaculture.2022.738986)
Delorme, N. J. et al. Stress-on-stress responses of a marine mussel (Perna canaliculus): Food limitation reduces the ability to cope with heat stress in juveniles. Mar. Ecol. Progr. Ser. 644, 105–117 (2020). (PMID: 10.3354/meps13375)
Li, S., Alfaro, A. C., Nguyen, T. V., Young, T. & Lulijwa, R. An integrated omics approach to investigate summer mortality of New Zealand Greenshell™ mussels. Metabolomics 16, 1–16 (2020). (PMID: 10.1007/s11306-020-01722-x)
Tremblay, R., Myrand, B., Sevigny, J.-M., Blier, P. & Guderley, H. Bioenergetic and genetic parameters in relation to susceptibility of blue mussels, Mytilus edulis (L.) to summer mortality. J. Exp. Mar. Biol. Ecol. 221, 27–58 (1998). (PMID: 10.1016/S0022-0981(97)00114-7)
Capelle, J. J., Garcia, A. B., Kamermans, P., Engelsma, M. Y. & Jansen, H. M. Observations on recent mass mortality events of marine mussels in the Oosterschelde, the Netherlands. Aquac. Int. 29, 1737–1751 (2021). (PMID: 10.1007/s10499-021-00713-6)
Somero, G. N. Thermal physiology and vertical zonation of intertidal animals: Optima, limits, and costs of living. Integr. Comp. Biol. 42, 780–789. https://doi.org/10.1093/icb/42.4.780 (2002). (PMID: 10.1093/icb/42.4.78021708776)
Sorte, C. J. et al. Thermal tolerance limits as indicators of current and future intertidal zonation patterns in a diverse mussel guild. Mar. Biol. 166, 1–13 (2019). (PMID: 10.1007/s00227-018-3452-6)
Petes, L. E., Menge, B. A. & Murphy, G. D. Environmental stress decreases survival, growth, and reproduction in New Zealand mussels. J. Exp. Mar. Biol. Ecol. 351, 83–91 (2007). (PMID: 10.1016/j.jembe.2007.06.025)
Trowbridge, C. D. Life at the edge: Population dynamics and salinity tolerance of a high intertidal, pool- dwelling ascoglossan opisthobranch on New Zealand rocky shores. J. Exp. Mar. Biol. Ecol. 182, 65–84. https://doi.org/10.1016/0022-0981(94)90211-9 (1994). (PMID: 10.1016/0022-0981(94)90211-9)
Olabarria, C. et al. Response of two mytilids to a heatwave: The complex interplay of physiology, behaviour and ecological interactions. PloS One 11, e0164330 (2016). (PMID: 10.1371/journal.pone.0164330277368965063473)
Morón Lugo, S. C. et al. Warming and temperature variability determine the performance of two invertebrate predators. Sci. Rep. 10, 6780. https://doi.org/10.1038/s41598-020-63679-0 (2020). (PMID: 10.1038/s41598-020-63679-0323219377176636)
Folt, C. L., Chen, C. Y., Moore, M. V. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877 (1999). (PMID: 10.4319/lo.1999.44.3_part_2.0864)
فهرسة مساهمة: Keywords: Perna canaliculus; hsp70 gene expression; Genotype; Green-lipped mussel; LT50; RT-qPCR; Selective breeding; Thermal tolerance
المشرفين على المادة: 0 (HSP70 Heat-Shock Proteins)
تواريخ الأحداث: Date Created: 20240819 Date Completed: 20240819 Latest Revision: 20240822
رمز التحديث: 20240823
مُعرف محوري في PubMed: PMC11333593
DOI: 10.1038/s41598-024-70034-0
PMID: 39160258
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-024-70034-0