دورية أكاديمية

Anticancer, antimicrobial and antioxidant activity of CuO-ZnO bimetallic nanoparticles: green synthesised from Eryngium foetidum leaf extract.

التفاصيل البيبلوغرافية
العنوان: Anticancer, antimicrobial and antioxidant activity of CuO-ZnO bimetallic nanoparticles: green synthesised from Eryngium foetidum leaf extract.
المؤلفون: Daimari J; Department of Chemistry, Central Institute of Technology Kokrajhar (Deemed to be University, under MoE, Govt. of India), Kokrajhar, Assam, 783370, India., Deka AK; Department of Chemistry, Central Institute of Technology Kokrajhar (Deemed to be University, under MoE, Govt. of India), Kokrajhar, Assam, 783370, India. a.kalita@cit.ac.in.
المصدر: Scientific reports [Sci Rep] 2024 Aug 22; Vol. 14 (1), pp. 19506. Date of Electronic Publication: 2024 Aug 22.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Copper*/chemistry , Plant Extracts*/chemistry , Plant Extracts*/pharmacology , Zinc Oxide*/chemistry , Zinc Oxide*/pharmacology , Plant Leaves*/chemistry , Metal Nanoparticles*/chemistry , Antioxidants*/pharmacology , Antioxidants*/chemistry , Antioxidants*/chemical synthesis , Green Chemistry Technology* , Antineoplastic Agents*/pharmacology , Antineoplastic Agents*/chemistry , Antineoplastic Agents*/chemical synthesis, Humans ; MCF-7 Cells ; Anti-Infective Agents/pharmacology ; Anti-Infective Agents/chemistry ; Anti-Infective Agents/chemical synthesis ; Microbial Sensitivity Tests ; Anti-Bacterial Agents/pharmacology ; Anti-Bacterial Agents/chemistry
مستخلص: In the present study, green synthetic pathway was adapted to synthesize CuO-ZnO bimetallic nanoparticles (BNPs) using Eryngium foetidum leaf extract and their anti-cancer activity against MCF7 breast cancer cell lines, anti-microbial activity and in vitro anti-oxidant activity were evaluated. Various bio-active compounds present in leaf extract were responsible for the reduction of CuO-ZnO NPs from respective Cu 2+ and Zn 2+ metal precursors. In the present study, the involvement of bio-active compounds present in E. foetidum extract before and after green synthesis of BNPs were evaluated for the first time. Rod-shaped and spherical structural morphology of synthesized BNPs were revealed by using FESEM, TEM, and XRD analysis with particle size ranged from 7 to 23 nm with an average size of 16.49 nm. The distribution of Cu and Zn were confirmed by elemental mapping. The green synthesized CuO-ZnO NPs showed significant cytotoxic effect with the inhibition rate 89.20 ± 0.03% at concentration of 500 μg/mL. Again, good antioxidant activity with IC 50; 0.253 mg/mL and antimicrobial activity of BNPs were also evaluated with the increasing order of MIC; E. coli (7.81 μg/mL) < B. subtilis (62.5 μg/mL) < S. aureus (31.25 μg/mL).
(© 2024. The Author(s).)
References: Muthuvel, A., Jothibas, M., Manoharan, C. & Jayakumar, S. J. Synthesis of CeO 2-NPs by chemical and biological methods and their photocatalytic, antibacterial and in vitro antioxidant activity. Res. Chem. Inter. 46, 2705–2729 (2020). (PMID: 10.1007/s11164-020-04115-w)
Muthuvel, A., Jothibas, M., Mohana, V. & Manoharan, C. Green synthesis of cerium oxide nanoparticles using Calotropis procera flower extract and their photocatalytic degradation and antibacterial activity. Inorg. Chem. Commun. 119, 108086 (2020). (PMID: 10.1016/j.inoche.2020.108086)
Stamenkovic, V. Platinum in fuel cells gets a helping hand. Science 5809, 172 (2007).
Elemike, E. E., Onwudiwe, D. C., Nundkuma, R. N., Singh, M. & Iyekowa, O. Green synthesis of Ag, Au and Ag-Au bimetallic nanoparticles using Stigmaphyllon ovatum leaf extract and their in vitro anticancer potential. Mater. Lett. 243, 148–152 (2019). (PMID: 10.1016/j.matlet.2019.02.049)
Ramesh, M., Anbuvannan, M. & Viruthagiri, G. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim. Acta Part A Mol. Biomol. Spect. 136, 864–870 (2015). (PMID: 10.1016/j.saa.2014.09.105)
Akintelu, S. A., Folorunso, A. S., Folorunso, F. A. & Oyebamiji, A. K. Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon 6, e04508 (2020). (PMID: 32715145737869710.1016/j.heliyon.2020.e04508)
Ealia, S. A. M. & Saravanakumar, M. P. A review on the classification, characterisation, synthesis of nanoparticles and their application. In IOP Conference Series: Materials Science and Engineering. Preprint at https://doi.org/10.1088/1757-899X/263/3/032019 (IOP Publishing, 2017).
Hasan, S. A review on nanoparticles: Their synthesis and types. Res. J. Recent Sci. 4, 911 (2015).
Muthuvel, A., Said, N. M., Jothibas, M., Gurushankar, K. & Mohana, V. Microwave-assisted green synthesis of nanoscaled titanium oxide: Photocatalyst, antibacterial and antioxidant properties. J. Mater. Sci. Mater. Electron. 32, 23522–23539 (2021). (PMID: 10.1007/s10854-021-06840-3)
Arumugam, A. et al. Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater. Sci. Eng. C. 49, 408–415 (2015). (PMID: 10.1016/j.msec.2015.01.042)
Al-Zaqri, N., Umamakeshvari, K., Mohana, V., Muthuvel, A. & Boshaala, A. Green synthesis of nickel oxide nanoparticles and its photocatalytic degradation and antibacterial activity. J. Mater. Sci. Mater. Electron. 33, 11864–11880 (2022). (PMID: 10.1007/s10854-022-08149-1)
Velsankar, K., Sudhahar, S., Parvathy, G. & Kaliammal, R. Effect of cytotoxicity and a antibacterial activity of biosynthesis of ZnO hexagonal shaped nanoparticles by Echinochloa frumentacea grains extract as a reducing agent. Mater. Chem. Phys. 239, 121976 (2020). (PMID: 10.1016/j.matchemphys.2019.121976)
Velsankar, K., Sudhahar, S. & Maheshwaran, G. Effect of biosynthesis of ZnO nanoparticles via Cucurbita seed extract on Culex tritaeniorhynchus mosquito larvae with its biological applications. J. Photochem. Photobiol. B Biol. 200, 111650 (2019). (PMID: 10.1016/j.jphotobiol.2019.111650)
Velsankar, K., Parvathy, G., Mohandoss, S. & Sudhahar, S. Effect of green synthesized ZnO nanoparticles using Paspalum scrobiculatum grains extract in biological applications. Microsc. Res. Tech. 85, 3069–3094 (2022). (PMID: 3561177110.1002/jemt.24167)
Velsankar, K. et al. Green inspired synthesis of ZnO nanoparticles and its characterizations with biofilm, antioxidant, anti-inflammatory, and anti-diabetic activities. J. Mol. Struct. 1255, 132420 (2022). (PMID: 10.1016/j.molstruc.2022.132420)
Grigore, M. E., Biscu, E. R., Holban, A. M., Gestal, M. C. & Grumezescu, A. M. Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals 9, 75 (2016). (PMID: 27916867519805010.3390/ph9040075)
Velsankar, K., Vinothini, V., Sudhahar, S., Kumar, M. K. & Mohadoss, S. Green synthesis of CuO nanoparticles via Plectranthus amboinicus leaves extract with its characterization on structural, morphological, and biological properties. Appl. Nanosci. 10, 3953–3971 (2020). (PMID: 10.1007/s13204-020-01504-w)
Velsankar, K., Parvathy, G., Mohandoss, S., Kumar, R. M. & Sudhahar, S. Green synthesis and characterization of CuO nanoparticles using Panicum sumatrense grains extract for biological applications. Appl. Nanosci. 12, 1993–2021 (2022). (PMID: 10.1007/s13204-022-02441-6)
Velsankar, K., Aravinth, K., Yong, W., Mohandoss, S. & Paiva-Santos, A. C. NiO nanoparticles, an algorithm of their biosynthesis, toxicity, and biomedical activities. J. Mol. Struct. 1291, 136012 (2023). (PMID: 10.1016/j.molstruc.2023.136012)
Velsankar, K., Suganya, S., Muthumari, P., Mohandoss, S. & Sudhahar, S. Ecofriendly green synthesis, characterization and biomedical applications of CuO nanoparticles synthesized using leaf extract of Capsicum frutescens. J. Environ. Chem. Eng. 9, 106299 (2021). (PMID: 10.1016/j.jece.2021.106299)
Jiang, J., Pi, J. & Cai, J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl. 2018, 1062562 (2018). (PMID: 30073019605742910.1155/2018/1062562)
Adeyemi, J. O., Onwudiwe, D. C. & Oyedeji, A. O. Biogenic synthesis of CuO, ZnO, and CuO–ZnO nanoparticles using leaf extracts of Dovyalis caffra and their biological properties. Molecules 27, 3206 (2022). (PMID: 35630680914426210.3390/molecules27103206)
Paul, J. H., Seaforth, C. E. & Tikasingh, T. Eryngium foetidum L.: A review. Fitoterapia 82, 302–308 (2011). (PMID: 2106263910.1016/j.fitote.2010.11.010)
Chowdhury, J. U., Nandi, N. C. & Yusuf, M. Chemical constituents of essential oil of the leaves of Eryngium foetidum from Bangladesh. Bangladesh J. Sci. Ind. Res. 42, 347–352 (2007). (PMID: 10.3329/bjsir.v42i3.674)
Rodrigues, T. L., Silva, M. E., Gurgel, E. S., Oliveira, M. S. & Lucas, F. C. Eryngium foetidum L. (Apiaceae): A literature review of traditional uses, chemical composition, and pharmacological activities. Evid.-Based Complement. Altern. Med. 2022, 2896895 (2022). (PMID: 10.1155/2022/2896895)
Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018). (PMID: 3020759310.3322/caac.21492)
Gardea-Torresdey, J. L. et al. Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett. 2, 397–401 (2002). (PMID: 10.1021/nl015673+)
Zhang, H., Li, T., Luo, W., Peng, G. X. & Xiong, J. Green synthesis of Ag nanoparticles from Leucus aspera and its application in anticancer activity against alveolar cancer. J. Exp. Nanosci. 17, 47–60 (2022). (PMID: 10.1080/17458080.2021.2007886)
Flieger, J., Flieger, W., Baj, J. & Maciejewski, R. Antioxidants: Classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles. Mater. 14, 4135 (2021). (PMID: 10.3390/ma14154135)
Ng, M. L. et al. Role of reactive oxygen species (ROS) in aging and aging-related diseases. Res. J. Pharm. Bio. Chem. Sci. 9, 44–51 (2018).
Rodrigo, R. Oxidative Stress and Antioxidants: Their Role in Human Disease 1–358 (Nova Biomedical Books, 2009).
Munteanu, I. G. & Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 22, 3380 (2021). (PMID: 33806141803723610.3390/ijms22073380)
Shahidi, F. & Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 18, 757–781 (2015). (PMID: 10.1016/j.jff.2015.01.047)
Wang, L., Hu, C. & Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017). (PMID: 10.2147/IJN.S121956)
Naikoo, G. A. et al. Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review. J. Saudi Chem. Soc. 25, 101304 (2021). (PMID: 10.1016/j.jscs.2021.101304)
Dadi, R., Azouani, R., Traore, M., Mielcarek, C. & Kanaev, A. Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. Mater. Sci. Eng. -C 104, 109968 (2019). (PMID: 10.1016/j.msec.2019.109968)
Anjum, S., Nawaz, K., Ahmad, B., Hano, C. & Abbasi, B. H. Green synthesis of biocompatible core–shell (Au–Ag) and hybrid (Au–ZnO and Ag–ZnO) bimetallic nanoparticles and evaluation of their potential antibacterial, antidiabetic, antiglycation and anticancer activities. RSC Adv. 12, 23845–23859 (2022). (PMID: 36093232939673110.1039/D2RA03196E)
Sindhudevi, M., Srinivasan, S., Karthekiyan, B. & Muthuvel, A. Green synthesis and characterization of Selenium/Zirconium bimetallic nanoparticles using Cinnamomum camphora leaf extract and their photocatalyst and anticancer activity. J. Water Environ. Nanotech. 8, 417–441 (2023).
Cao, Y. et al. Green synthesis of bimetallic ZnO–CuO nanoparticles and their cytotoxicity properties. Sci. Rep. 11, 23479 (2021). (PMID: 34873281864877910.1038/s41598-021-02937-1)
Madeshwaran, K. & Venkatachalam, R. Green synthesis of bimetallic ZnO–CuO nanoparticles using Annona muricata l. extract: Investigation of antimicrobial, antioxidant, and anticancer properties. J. Ind. Eng. Chem. https://doi.org/10.1016/j.jiec.2024.06.002 (2024). (PMID: 10.1016/j.jiec.2024.06.002)
Alley, M. et al. Validation of an automated microculture tetrazolium assay (MTA) to assess growth and drug sensitivity of human tumor cell lines. Int. Proc. Am. Assoc. Cancer Res. 27, 389–389 (1986).
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983). (PMID: 660668210.1016/0022-1759(83)90303-4)
Gosens, I. et al. Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation. Particle Fibre Toxicol. 7, 37 (2010). (PMID: 10.1186/1743-8977-7-37)
Grasel, F. D. S., Ferrão, M. F. & Wolf, C. R. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 153, 94–101 (2016). (PMID: 10.1016/j.saa.2015.08.020)
Ernawita, et al. In vitro lipophilic antioxidant capacity, antidiabetic and antibacterial activity of citrus fruits extracts from Aceh, Indonesia. Antioxidants 6, 11 (2017). (PMID: 28165379538417410.3390/antiox6010011)
Zannini, D., Dal, P. G., Malinconico, M., Santagata, G. & Immirzi, B. Citrus pomace biomass as a source of pectin and lignocellulose fibers: From waste to upgraded biocomposites for mulching applications. Polymers 13, 1280 (2021). (PMID: 33919976807095010.3390/polym13081280)
Ajuong, E. & Birkinshaw, C. The effects of acetylation on the extractives of Sitka Spruce (Picea sitchensis) and Larch (Larix leptoleptis) wood. Eur. J. Wood Wood Prod. 62, 189–196 (2004). (PMID: 10.1007/s00107-004-0481-2)
Chien, W.-J., Saputri, D. S. & Lin, H.-Y. Valorization of Taiwan’s Citrus depressa Hayata peels as a source of nobiletin and tangeretin using simple ultrasonic-assisted extraction. Curr. Res. Food Sci. 5, 278–287 (2022). (PMID: 35146444881666710.1016/j.crfs.2022.01.013)
Kumar, K. J., Basumatary, S., Daimari, J., Mondal, A. & Deka, A. K. Photocatalytic degradation of methylene blue with polyphenol rich Citrus limetta (peel waste) facilitated ZnO nanoparticles under sunlight. React. Kinet. Mech. Cat. 137, 483–503 (2024). (PMID: 10.1007/s11144-023-02527-4)
Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 13, 2638–2650 (2011). (PMID: 10.1039/c1gc15386b)
Fang, J. & Xuan, Y. Investigation of optical absorption and photothermal conversion characteristics of binary CuO/ZnO nanofluids. RSC Adv. 7, 56023–56033 (2017). (PMID: 10.1039/C7RA12022B)
Wasim, M. et al. Surface modification of bacterial cellulose by copper and zinc oxide sputter coating for UV-resistance/antistatic/antibacterial characteristics. Coatings 10, 364 (2020). (PMID: 10.3390/coatings10040364)
Ayuso, M. et al. Phenolic composition and biological activities of the in vitro cultured endangered Eryngium viviparum. J. Gay. Ind. Crops Prod. 148, 112325 (2020). (PMID: 10.1016/j.indcrop.2020.112325)
Leitão, D. D. S. T. C. et al. Amazonian Eryngium foetidum leaves exhibited very high contents of bioactive compounds and high singlet oxygen quenching capacity. Int. J. Food Prop. 23, 1452–1464 (2020). (PMID: 10.1080/10942912.2020.1811311)
Derda, M., Thiem, B., Budzianowski, J., Wojt, W. J. & Wojtkowiak-Giera, A. The evaluation of the amebicidal activity of Eryngium planum extracts. Acta Poloniae Pharmaceutica 70, 1027–1034 (2013). (PMID: 24383326)
Leitão, D. D. S. T. C. Extracts of Eryngium foetidum leaves from the Amazonia were efficient scavengers of ROS and RNS. Antioxidants 12, 1112 (2023). (PMID: 372379781021517610.3390/antiox12051112)
Naseer, M., Aslam, U., Khalid, B. & Chen, B. Green route to synthesize zinc oxide nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci. Rep. 10, 9055 (2020). (PMID: 32493935727011510.1038/s41598-020-65949-3)
Muthuvel, A., Jothibas, M. & Manoharan, C. Synthesis of copper oxide nanoparticles by chemical and biogenic methods: Photocatalytic degradation and in vitro antioxidant activity. Nanotech. Environ. Eng. 5, 14 (2020). (PMID: 10.1007/s41204-020-00078-w)
Vibitha, B. V., Anitha, B., Krishna, P. G. A. & Tharayil, J. N. Plant extracts assisted synthesis, characterization and antioxidant properties of ZnO: CuO nanocomposites. AIP Conf. Proc. https://doi.org/10.1063/5.0009174 (2020). (PMID: 10.1063/5.0009174)
Takele, E., Feyisa, B. R., Shumi, G. & Kenasa, G. Green synthesis, characterization, and antibacterial activity of CuO/ZnO nanocomposite using Zingiber officinale rhizome extract. J. Chem. 2023, 3481389 (2023). (PMID: 10.1155/2023/3481389)
Dutta, R. K., Sharma, P. K., Bhargava, R., Kumar, N. & Pandey, A. C. Differential susceptibility of Escherichia coli cells toward transition metal-doped and matrix-embedded ZnO nanoparticles. J. Phys. Chem. B 114, 5594–5599 (2010). (PMID: 2036985710.1021/jp1004488)
Verma, A. & Balekar, N. Antimicrobial susceptibility testing: A comprehensive review. Int. J. Newgen Res. Pharm. Healthc. 2023, 08–14 (2023).
Hasanin, M. S., Hashem, A. H., Al-Askar, A. A., Haponiuk, J. & Saied, E. A novel nanocomposite based on mycosynthesized bimetallic zinc-copperoxide nanoparticles, nanocellulose and chitosan: Characterization, antimicrobial and photocatalytic activities. Electron. J. Biotechnol. 65, 45–55 (2023). (PMID: 10.1016/j.ejbt.2023.05.001)
Huang, X. J. et al. The antibacterial properties of 4, 8, 4ʹ, 8ʹ-tetramethoxy (1,1ʹ-biphenanthrene)-2,7,2ʹ,7ʹ-tetrol from fibrous roots of Bletilla striata. Indian J. Microbiol. 61, 195–202 (2021). (PMID: 33927460803907510.1007/s12088-021-00932-8)
Orshiso, T. A. et al. Biosynthesis of Artemisia abyssinica leaf extract-mediated bimetallic ZnO–CuO nanoparticles: Antioxidant, anticancer, and molecular docking studies. ACS Omega 8, 41039–41053 (2023). (PMID: 379699841063389010.1021/acsomega.3c01814)
Nguyen, T. T. T., Nguyen, Y. N. N., Tran, X. T., Nguyen, T. T. T. & Van, T. T. Green synthesis of CuO, ZnO and CuO/ZnO nanoparticles using Annona glabra leaf extract for antioxidant, antibacterial and photocatalytic activities. J. Environ. Chem. Eng. 11, 111003 (2023). (PMID: 10.1016/j.jece.2023.111003)
Dubey, S., Shukla, A. & Shukla, R. Green synthesis, characterization, and biological activities of Zn, Cu monometallic and bimetallic nanoparticles using Borassus flabellifer leaves extract. Curr. Chem. Lett. 12, 799–812 (2023). (PMID: 10.5267/j.ccl.2023.4.002)
Fathima, F. P. et al. Green synthesis of CuO/ZnO nanocomposites using Ficus drupacea: In-vitro antibacterial and cytotoxicity analysis. ChemistrySelect 9, e202401235 (2024). (PMID: 10.1002/slct.202401235)
معلومات مُعتمدة: 202122-NFST-ASS-00285 UGC New Delhi India
فهرسة مساهمة: Keywords: E. foetidum; Anticancer; Antimicrobial; Antioxidant; BNPs; Green synthesis
المشرفين على المادة: 789U1901C5 (Copper)
0 (Plant Extracts)
SOI2LOH54Z (Zinc Oxide)
0 (Antioxidants)
V1XJQ704R4 (cupric oxide)
0 (Antineoplastic Agents)
0 (Anti-Infective Agents)
0 (Anti-Bacterial Agents)
تواريخ الأحداث: Date Created: 20240822 Date Completed: 20240822 Latest Revision: 20240822
رمز التحديث: 20240823
DOI: 10.1038/s41598-024-69847-w
PMID: 39174638
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-024-69847-w