دورية أكاديمية

MMP13 Expression and Activity Suggest Its Role in Bone Resorption in Ameloblastomas.

التفاصيل البيبلوغرافية
العنوان: MMP13 Expression and Activity Suggest Its Role in Bone Resorption in Ameloblastomas.
المؤلفون: Valeriano AT; Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil., Camara LS; Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil., Bernardes VF; Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil., Pais FS; René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz Minas), Belo Horizonte, MG, Brazil., Araújo FMG; René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz Minas), Belo Horizonte, MG, Brazil., Salim ACM; René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz Minas), Belo Horizonte, MG, Brazil., Fernandes GDR; René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz Minas), Belo Horizonte, MG, Brazil., Stussi F; Biological Sciences Institute, Universidade Federal de minas Gerais, Belo Horizonte, MG, Brazil., Gomes CC; Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil., de Andrade Santos PP; Department of Morphology, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil., de Souza LB; Department of Oral Pathology, Universidade Federal do Rio Grande do Norte (UFRN), Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil., Gomez RS; Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG) and Medical School, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, MG, Brazil., Diniz MG; Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
المصدر: Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology [J Oral Pathol Med] 2024 Aug 27. Date of Electronic Publication: 2024 Aug 27.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: Denmark NLM ID: 8911934 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1600-0714 (Electronic) Linking ISSN: 09042512 NLM ISO Abbreviation: J Oral Pathol Med Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford, UK : Wiley-Blackwell
Original Publication: Copenhagen : Munksgaard, c1989-
مستخلص: Background: Ameloblastoma is a locally destructive benign odontogenic tumor. While the neoplastic cells of conventional ameloblastoma can infiltrate the connective tissue and bone, in unicystic ameloblastoma the epithelium is encapsulated. The mechanisms driving ameloblastoma's bone resorption remains unclear.
Methods: RNA sequencing (RNA-seq) was performed in a discovery cohort of conventional ameloblastoma, and pathway enrichment analysis was carried out. mRNA levels of MMP13, a gene associated with bone resorption, were assessed using RT-qPCR in a larger cohort of conventional ameloblastoma and in unicystic ameloblastoma. Zymogram gels and the immunoexpression profile of collagenase 3 (encoded by MMP13 gene) were evaluated as well.
Results: Enriched pathways related to bone mineralization and upregulation of MMP13 were observed in ameloblastomas. Collagenolytic activity of collagenase 3 was detected in the tumor lysates. Collagenase 3 immunopositivity was observed in ameloblastomatous epithelium infiltrating the fibrous capsule of unicystic ameloblastoma. At the tumor-bone interface, collagenase 3 expression was detected in stromal cells, osteoblasts, and osteocytes.
Conclusion: The results indicate a potential involvement of MMP13 in ameloblastoma-related bone resorption and progression.
(© 2024 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)
References: WHO Classification of Tumours Editorial Board, “Head and Neck Tumours,” Beta version published ahead of print, 2022.
E. W. Odell, Odontogenic Tumours and Related Jaw Lesions. Cawson's Essentials of Oral Pathology and Oral Medicine, 9th ed. (China: Elsevier Ltd, 2017), 165–170.
M. G. Diniz, B. V. A. Guimarães, N. B. Pereira, G. H. F. de Menezes, C. C. Gomes, and R. S. Gomez, “DNA Damage Response Activation and Cell Cycle Dysregulation in Infiltrative Ameloblastomas: A Proposed Model for Ameloblastoma Tumor Evolution,” Experimental and Molecular Pathology 102, no. 3 (2017): 391–395, https://doi.org/10.1016/j.yexmp.2017.04.003.
L. M. Guimarães, B. P. Coura, R. S. Gomez, and C. C. Gomes, “The Molecular Pathology of Odontogenic Tumors: Expanding the Spectrum of MAPK Pathway Driven Tumors,” Frontiers in Oral Health 2 (2021): 2, https://doi.org/10.3389/froh.2021.740788.
D. Bakkalci, A. Jay, A. Rezaei, et al., “Bioengineering the Ameloblastoma Tumour to Study Its Effect on Bone Nodule Formation,” Scientific Reports 11, no. 1 (2021): 24088, https://doi.org/10.1038/s41598‐021‐03484‐5.
Y. Qian and H.‐Z. Huang, “The Role of RANKL and MMP‐9 in the Bone Resorption Caused by Ameloblastoma,” Journal of Oral Pathology & Medicine 39, no. 8 (2010): 592–598, https://doi.org/10.1111/j.1600‐0714.2009.00882.x.
X. Liu, Z. Chen, T. Lan, P. Liang, and Q. Tao, “Upregulation of Interleukin‐8 and Activin A Induces Osteoclastogenesis in Ameloblastoma,” International Journal of Molecular Medicine 43 (2019): 2329–2340, https://doi.org/10.3892/ijmm.2019.4171.
S. M. Rumble, P. Lacroute, A. V. Dalca, M. Fiume, A. Sidow, and M. Brudno, “SHRiMP: Accurate Mapping of Short Color‐Space Reads,” PLoS Computational Biology 5, no. 5 (2009): e1000386, https://doi.org/10.1371/journal.pcbi.1000386.
S. Anders, P. T. Pyl, and W. Huber, “HTSeq—A Python Framework to Work With High‐Throughput Sequencing Data,” Bioinformatics 31, no. 2 (2015): 166–169, https://doi.org/10.1093/bioinformatics/btu638.
M. I. Love, W. Huber, and S. Anders, “Moderated Estimation of Fold Change and Dispersion for RNA‐Seq Data With DESeq2,” Genome Biology 15, no. 12 (2014): 550, https://doi.org/10.1186/s13059‐014‐0550‐8.
D. Szklarczyk, R. Kirsch, M. Koutrouli, et al., “The STRING Database in 2023: Protein–Protein Association Networks and Functional Enrichment Analyses for any Sequenced Genome of Interest,” Nucleic Acids Research 51, no. D1 (2023): D638–D646, https://doi.org/10.1093/nar/gkac1000.
K. Heikinheimo, K. J. Kurppa, A. Laiho, et al., “Early Dental Epithelial Transcription Factors Distinguish Ameloblastoma From Keratocystic Odontogenic Tumor,” Journal of Dental Research 94, no. 1 (2015): 101–111, https://doi.org/10.1177/0022034514556815.
GraphPad Software, “GraphPad Prism (Version 8.4.3) [Software],” 2020, https://www.graphpad.com/.
National Institutes of Health, “ImageJ (Version 1.53a) [Software],” 2020, https://imagej.nih.gov/ij/.
P. P. de Andrade Santos, C. F. W. Nonaka, C. A. G. Barboza, P. L. Pereira, and L. B. de Souza, “Immunohistochemical Analysis of MMP‐13 and EMMPRIN in Epithelial Odontogenic Lesions,” European Archives of Oto‐Rhino‐Laryngology 276, no. 11 (2019): 3203–3211, https://doi.org/10.1007/s00405‐019‐05589‐0.
K. Heikinheimo, K. J. Jee, T. Niini, et al., “Gene Expression Profiling of Ameloblastoma and Human Tooth Germ by Means of a cDNA Microarray,” Journal of Dental Research 81, no. 8 (2002): 525–530, https://doi.org/10.1177/154405910208100805.
S. Li, D. M. Pritchard, and L.‐G. Yu, “Regulation and Function of Matrix Metalloproteinase‐13 in Cancer Progression and Metastasis,” Cancers (Basel) 14, no. 13 (2022): 3263, https://doi.org/10.3390/cancers14133263.
N. Johansson, U. Saarialho‐Kere, K. Airola, et al., “Collagenase‐3 (MMP‐13) Is Expressed by Hypertrophic Chondrocytes, Periosteal Cells, and Osteoblasts During Human Fetal Bone Development,” Developmental Dynamics 208, no. 3 (1997): 387–397, https://doi.org/10.1002/(SICI)1097‐0177(199703)208:3<387::AID‐AJA9>3.0.CO;2‐E.
D. J. Behonick, Z. Xing, S. Lieu, et al., “Role of Matrix Metalloproteinase 13 in Both Endochondral and Intramembranous Ossification During Skeletal Regeneration,” PLoS One 2, no. 11 (2007): e1150, https://doi.org/10.1371/journal.pone.0001150.
K. C. Nannuru, M. Futakuchi, M. L. Varney, T. M. Vincent, E. G. Marcusson, and R. K. Singh, “Matrix Metalloproteinase (MMP)‐13 Regulates Mammary Tumor‐Induced Osteolysis by Activating MMP9 and Transforming Growth Factor‐Beta Signaling at the Tumor‐Bone Interface,” Cancer Research 70, no. 9 (2010): 3494–3504, https://doi.org/10.1158/0008‐5472.CAN‐09‐3251.
E. Pivetta, M. Scapolan, M. Pecolo, et al., “MMP‐13 Stimulates Osteoclast Differentiation and Activation in Tumour Breast Bone Metastases,” Breast Cancer Research 13, no. 5 (2011): R105, https://doi.org/10.1186/bcr3047.
T. A. Guise, “Breaking Down Bone: New Insight Into Site‐Specific Mechanisms of Breast Cancer Osteolysis Mediated by Metalloproteinases,” Genes & Development 23, no. 18 (2009): 2117–2123, https://doi.org/10.1101/gad.1854909.
M. Kotepui, C. Punsawad, C. Chupeerach, A. Songsri, L. Charoenkijkajorn, and S. Petmitr, “Differential Expression of Matrix Metalloproteinase‐13 in Association With Invasion of Breast Cancer,” Contemporary Oncology 3 (2016): 225–228, https://doi.org/10.5114/wo.2016.61565.
J.‐R. Wang, X.‐H. Li, X.‐J. Gao, et al., “Expression of MMP‐13 Is Associated With Invasion and Metastasis of Papillary Thyroid Carcinoma,” European Review for Medical and Pharmacological Sciences 17, no. 4 (2013): 427–435.
N. Johansson, K. Airola, R. Grénman, A. L. Kariniemi, U. Saarialho‐Kere, and V. M. Kähäri, “Expression of Collagenase‐3 (Matrix Metalloproteinase‐13) in Squamous Cell Carcinomas of the Head and Neck,” American Journal of Pathology 151, no. 2 (1997): 499–508.
C. Mesa, M. Mirza, N. Mitsutake, et al., “Conditional Activation of RET/PTC3 and BRAFV600E in Thyroid Cells Is Associated With Gene Expression Profiles That Predict a Preferential Role of BRAF in Extracellular Matrix Remodeling,” Cancer Research 66, no. 13 (2006): 6521–6529, https://doi.org/10.1158/0008‐5472.CAN‐06‐0739.
C. Chan, T. Lin, J. J. Sheu, W. Wu, and C. Huang, “Matrix Metalloproteinase‐13 Is a Target Gene of High‐Mobility Group Box‐Containing Protein 1 in Modulating Oral Cancer Cell Invasion,” Journal of Cellular Physiology 234, no. 4 (2019): 4375–4384, https://doi.org/10.1002/jcp.27223.
K. B. S. Paiva and J. M. Granjeiro, “Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair,” Progress in Molecular Biology and Translational Science 148 (2017): 203–303, https://doi.org/10.1016/bs.pmbts.2017.05.001.
E. Tsourdi, K. Jähn, M. Rauner, B. Busse, and L. F. Bonewald, “Physiological and Pathological Osteocytic Osteolysis,” Journal of Musculoskeletal & Neuronal Interactions 18, no. 3 (2018): 292–303.
F. Pin, M. Prideaux, J. R. Huot, et al., “Non‐Bone Metastatic Cancers Promote Osteocyte‐Induced Bone Destruction,” Cancer Letters 520 (2021): 80–90, https://doi.org/10.1016/j.canlet.2021.06.030.
معلومات مُعتمدة: Fundação de Amparo à Pesquisa do Estado de Minas Gerais; Conselho Nacional de Desenvolvimento Científico e Tecnológico
فهرسة مساهمة: Keywords: ameloblastoma; bone resorption; collagenase 3; matrix metalloproteinase 13; odontogenic tumor
تواريخ الأحداث: Date Created: 20240828 Latest Revision: 20240828
رمز التحديث: 20240828
DOI: 10.1111/jop.13577
PMID: 39192690
قاعدة البيانات: MEDLINE
الوصف
تدمد:1600-0714
DOI:10.1111/jop.13577