دورية أكاديمية

Low Thyroid Hormones Level Attenuates Mitochondrial Dysfunction and Right Ventricular Failure in Pulmonary Hypertensive Rats.

التفاصيل البيبلوغرافية
العنوان: Low Thyroid Hormones Level Attenuates Mitochondrial Dysfunction and Right Ventricular Failure in Pulmonary Hypertensive Rats.
المؤلفون: Souza NSC; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 373 Carlos Chagas Filho Avenue, Rio de Janeiro, Brazil., Barenco-Marins T; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 373 Carlos Chagas Filho Avenue, Rio de Janeiro, Brazil., Ferraz AP; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 373 Carlos Chagas Filho Avenue, Rio de Janeiro, Brazil., Barbosa RAQ; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 373 Carlos Chagas Filho Avenue, Rio de Janeiro, Brazil., Maciel L; Campus Professor Geraldo Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil., Ponte CG; Instituto Federal de Educação, Ciências E Tecnologia do Rio de Janeiro, Rio de Janeiro, RJ, Brazil., Seara FAC; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 373 Carlos Chagas Filho Avenue, Rio de Janeiro, Brazil. searafac@biof.ufrj.br., Olivares EL; Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil.; Sociedade Brasileira de Fisiologia, Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, São Paulo, Brazil., Nascimento JHM; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 373 Carlos Chagas Filho Avenue, Rio de Janeiro, Brazil.
المصدر: Cardiovascular drugs and therapy [Cardiovasc Drugs Ther] 2024 Aug 31. Date of Electronic Publication: 2024 Aug 31.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic For The International Society For Cardiovascular Pharmacotherapy Country of Publication: United States NLM ID: 8712220 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-7241 (Electronic) Linking ISSN: 09203206 NLM ISO Abbreviation: Cardiovasc Drugs Ther Subsets: MEDLINE
أسماء مطبوعة: Publication: Norwell Ma : Kluwer Academic For The International Society For Cardiovascular Pharmacotherapy
Original Publication: [Norwell, MA] : Martinus Nijhoff Pub., [c1987-
مستخلص: Purpose: This study is to investigate the repercussions of hypothyroidism in the pathophysiological progression of pulmonary arterial hypertension (PAH).
Methods: While the control (CTL, n = 5) male Wistar rats received vehicle, PAH was induced with monocrotaline (MCT group, n = 15). Hypothyroidism was induced in a subset of rats by methimazole 3 weeks prior to the MCT injection (MMZ + MCT group, n = 15). Plasma thyroid hormones were measured by radioimmunoassay. Electrocardiographic, echocardiographic, and hemodynamic analyses were performed to evaluate the progression of PAH. Gene expression of antioxidant enzymes and cardiac hypertrophy markers were assessed by qPCR. Mitochondrial respiration, ATP levels, and ROS production were measured in right ventricular (RV) samples.
Results: Plasma T3 and T4 decreased in both MCT and MMZ + MCT groups (p < 0.05). Right ventricular systolic pressure (RVSP) increased, and RV - dP/dt, + dP/dt, and contractility index decreased in the MCT versus the CTL group and remained within control levels in the MMZ + MCT group (p < 0.05). Relative RV weight, RV wall thickness, RV diastolic area, and relative lung weight were augmented in the MCT versus the CTL group, whereas all parameters were improved to the CTL levels in the MMZ + MCT group (p < 0.05). Only the MCT group exhibited an increased duration of QTc interval compared to the baseline period (p < 0.05). ADP-induced mitochondrial respiration and ATP levels were decreased, and ROS production was increased in MCT versus the CTL group (p < 0.05), while the MMZ + MCT group exhibited increased mitochondrial respiration versus the MCT group (p < 0.05).
Conclusion: Hypothyroidism attenuated the RV mitochondrial dysfunction and the pathophysiological progression of MCT-induced PAH.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F. Mechanisms of disease: pulmonary arterial hypertension. Nat Rev Cardiol. 2011;8(8):443–55. https://doi.org/10.1038/nrcardio.2011.87 . (PMID: 10.1038/nrcardio.2011.87216913147097518)
Van Wolferen SA, Marcus JT, Boonstra A, et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J. 2007;28(10):1250–7. https://doi.org/10.1093/eurheartj/ehl477 . (PMID: 10.1093/eurheartj/ehl47717242010)
Brewis MJ, Bellofiore A, Vanderpool RR, et al. Imaging right ventricular function to predict outcome in pulmonary arterial hypertension. Int J Cardiol. 2016;218:206–11. https://doi.org/10.1016/j.ijcard.2016.05.015 . (PMID: 10.1016/j.ijcard.2016.05.015272361165001160)
Li JH, Safford RE, Aduen JF, et al. Pulmonary hypertension and thyroid disease. Chest. 2007;132(3):793–7. https://doi.org/10.1378/chest.07-0366 . (PMID: 10.1378/chest.07-036617646226)
Curnock AL, Dweik RD, Higgins BH, Saadi HF, Arroliga AC. High prevalence of hypothyroidism in patients with primary pulmonary hypertension. Am J Med Sci. 1999;318(5):289–92. https://doi.org/10.1016/S0002-9629(15)40640-8 . (PMID: 10.1016/S0002-9629(15)40640-810555089)
Chu JW, Kao PN, Faul JL, Doyle RL. High prevalence of autoimmune thyroid disease in pulmonary arterial hypertension. Chest. 2002;122(5):1668–73. https://doi.org/10.1378/chest.122.5.1668 . (PMID: 10.1378/chest.122.5.166812426269)
Richter MJ, Sommer N, Schermuly R, et al. The prognostic impact of thyroid function in pulmonary hypertension. J Hear Lung Transplant. 2016;35(12):1427–34. https://doi.org/10.1016/j.healun.2016.05.022 . (PMID: 10.1016/j.healun.2016.05.022)
Miura Y, Fukumoto Y, Sugimura K, et al. Identification of new prognostic factors of pulmonary hypertension. Circ J. 2010;74(9):1965–71. https://doi.org/10.1253/circj.CJ-10-0270 . (PMID: 10.1253/circj.CJ-10-027020631450)
Siu C-W, Zhang X-H, Yung C, Kung AWC, Lau C-P, Tse H-F. hemodynamic changes in hyperthyroidism-related pulmonary hypertension: a prospective echocardiographic study. J Clin Endocrinol Metab. 2007;92(5):1736–42. https://doi.org/10.1210/jc.2006-1877 . (PMID: 10.1210/jc.2006-187717327384)
Wassen FWJS, Schiel AE, Kuiper GGJM, et al. Induction of thyroid hormone-degrading deiodinase in cardiac hypertrophy and failure. Endocrinology. 2002;143(7):2812–5. https://doi.org/10.1210/endo.143.7.8985 . (PMID: 10.1210/endo.143.7.898512072417)
Al Husseini A, Bagnato G, Farkas L, et al. Thyroid hormone is highly permissive in angioproliferative pulmonary hypertension in rats. Eur Respir J Eur Respir Soc. 2013;41(1):104–14. https://doi.org/10.1183/09031936.00196511.
Olivares EL, Marassi MP, Fortunato RS, et al. Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats—a time course study. Endocrinology. 2007;148(10):4786–92. https://doi.org/10.1210/en.2007-0043 . (PMID: 10.1210/en.2007-004317628010)
Ueta CB, Oskouei BN, Olivares EL, et al. Absence of myocardial thyroid hormone inactivating deiodinase results in restrictive cardiomyopathy in mice. Mol Endocrinol. 2012;26(5):809–18. https://doi.org/10.1210/me.2011-1325 . (PMID: 10.1210/me.2011-1325224031733355550)
Seara FAC, Araujo IG, Império GE, et al. Propranolol inhibits myocardial infarction-induced brown adipose tissue D2 activation and maintains a low thyroid hormone state in rats. Braz J Med Biol Res. 2019;52(10): e8491. https://doi.org/10.1590/1414-431x20198491 . (PMID: 10.1590/1414-431x20198491316183686787959)
Wassner AJ, Jugo RH, Dorfman DM, et al. Myocardial induction of type 3 deiodinase in dilated cardiomyopathy. Thyroid. 2017;27(5):732–7. https://doi.org/10.1089/thy.2016.0570 . (PMID: 10.1089/thy.2016.0570283143805421592)
Pol CJ, Muller A, Zuidwijk MJ, et al. Left-ventricular remodeling after myocardial infarction is associated with a cardiomyocyte-specific hypothyroid condition. Endocrinology. 2011;152(2):669–79. https://doi.org/10.1210/en.2010-0431 . (PMID: 10.1210/en.2010-043121159857)
Janssen R, Zuidwijk M, Muller A, et al. Cardiac expression of deiodinase type 3 (Dio3) following myocardial infarction is associated with the induction of a pluripotency microRNA signature from the Dlk1-Dio3 genomic region. Endocrinology. 2013;154(6):1973–1978. https://doi.org/10.1210/en.2012-2017 .
Seara FAC, Maciel L, Barbosa RAQ, et al. Cardiac ischemia/reperfusion injury is inversely affected by thyroid hormones excess or deficiency in male Wistar rats. Calvert J, editor. PLoS One. 2018;13(1):e0190355. https://doi.org/10.1371/journal.pone.0190355.
Lardy HA, Feldott G. Metabolic effects of thyroxine in vitro. Ann N Y Acad Sci. 1951;54(4):636–48. https://doi.org/10.1111/j.1749-6632.1951.tb54465.x . (PMID: 10.1111/j.1749-6632.1951.tb54465.x14903805)
Piao L, Marsboom G, Archer SL. Mitochondrial metabolic adaptation in right ventricular hypertrophy and failure. J Mol Med. 2010;88(10):1011–20. https://doi.org/10.1007/s00109-010-0679-1 . (PMID: 10.1007/s00109-010-0679-120820751)
Gomez-Arroyo J, Mizuno S, Szczepanek K, et al. Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension. Circ Hear Fail. 2013;6(1):136–44. https://doi.org/10.1161/CIRCHEARTFAILURE.111.966127 . (PMID: 10.1161/CIRCHEARTFAILURE.111.966127)
Enache I, Charles A-L, Bouitbir J, et al. Skeletal muscle mitochondrial dysfunction precedes right ventricular impairment in experimental pulmonary hypertension. Mol Cell Biochem. 2013;373(1–2):161–70. https://doi.org/10.1007/s11010-012-1485-6 . (PMID: 10.1007/s11010-012-1485-623099843)
Redout E, Wagner M, Zuidwijk M, et al. Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species. Cardiovasc Res. 2007;75(4):770–81. https://doi.org/10.1016/j.cardiores.2007.05.012 . (PMID: 10.1016/j.cardiores.2007.05.01217582388)
Pereira SL, Kummerle AE, Fraga CAM, et al. A novel Ca2+ channel antagonist reverses cardiac hypertrophy and pulmonary arteriolar remodeling in experimental pulmonary hypertension. Eur J Pharmacol. 2013;702(1–3):316–22. https://doi.org/10.1016/j.ejphar.2013.01.050 . (PMID: 10.1016/j.ejphar.2013.01.05023399770)
Seara FAC, Arantes PC, Domingos AE, et al. Cardiac electrical and contractile disorders promoted by anabolic steroid overdose are associated with late autonomic imbalance and impaired Ca2+ handling. Steroids. 2019;148:1–10. https://doi.org/10.1016/j.steroids.2019.04.001 . (PMID: 10.1016/j.steroids.2019.04.00131028764)
Alencar AKN, Pereira SL, Montagnoli TL, et al. Beneficial effects of a novel agonist of the adenosine A 2 A receptor on monocrotaline-induced pulmonary hypertension in rats. Br J Pharmacol. 2013;169(5):953–62. https://doi.org/10.1111/bph.12193 . (PMID: 10.1111/bph.12193235306103696320)
Gedik N, Maciel L, Schulte C, et al. Cardiomyocyte mitochondria as targets of humoral factors released by remote ischemic preconditioning. Arch Med Sci. 2017;2(2):448–58. https://doi.org/10.5114/aoms.2016.61789 . (PMID: 10.5114/aoms.2016.61789)
Matta L, Fonseca TS, Faria CC, et al. The effect of acute aerobic exercise on redox homeostasis and mitochondrial function of rat white adipose tissue. Oxid Med Cell Longev. 2021;2021(1):1–15. https://doi.org/10.1155/2021/4593496 . Bernardi M, editor.
Bianco AC, Anderson G, Forrest D, et al. American Thyroid Association guide to investigating thyroid hormone economy and action in rodent and cell models. Thyroid. 2014;24(1):88–168. https://doi.org/10.1089/thy.2013.0109 . (PMID: 10.1089/thy.2013.0109240011333887458)
Sun C-K, Yuen C-M, Kao Y-H, et al. Propylthiouracil attenuates monocrotaline-induced pulmonary arterial hypertension in rats. Circ J. 2009;73(9):1722–1730. https://doi.org/10.1253/circj.CJ-09-0074 .
Ferraz AP, Seara FAC, Baptista EF, et al. BKCa channel activation attenuates the pathophysiological progression of monocrotaline-induced pulmonary arterial hypertension in Wistar rats. Cardiovasc Drugs Ther. 2021;53(4):719–32. https://doi.org/10.1007/s10557-020-07115-5 . (PMID: 10.1007/s10557-020-07115-5)
Marvisi M, Zambrelli P, Brianti M, et al. Pulmonary hypertension is frequent in hyperthyroidism and normalizes after therapy. Eur J Intern Med. 2006;17(4):267–71. https://doi.org/10.1016/j.ejim.2005.11.023 . (PMID: 10.1016/j.ejim.2005.11.02316762776)
Davis FB, Mousa SA, O’Connor L, et al. proangiogenic action of thyroid hormone is fibroblast growth factor–dependent and is initiated at the cell surface. Circ Res. 2004;94(11):1500–6. https://doi.org/10.1161/01.RES.0000130784.90237.4a . (PMID: 10.1161/01.RES.0000130784.90237.4a15117822)
Oriowo MA, Oommen E, Khan I. Hyperthyroidism enhances 5-HT-induced contraction of the rat pulmonary artery: role of calcium-activated chloride channel activation. Eur J Pharmacol. 2011;669(1–3):108–14. https://doi.org/10.1016/j.ejphar.2011.07.002 . (PMID: 10.1016/j.ejphar.2011.07.00221806982)
Rain S, Handoko ML, Trip P, et al. Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation. 2013;128(18):2016–25. https://doi.org/10.1161/CIRCULATIONAHA.113.001873 . (PMID: 10.1161/CIRCULATIONAHA.113.00187324056688)
Roeleveld RJ, Vonk-Noordegraaf A, Marcus JT, et al. Effects of epoprostenol on right ventricular hypertrophy and dilatation in pulmonary hypertension. Chest. 2004;125(2):572–9. https://doi.org/10.1378/chest.125.2.572 . (PMID: 10.1378/chest.125.2.57214769740)
Straus SMJM, Kors JA, De Bruin ML, et al. Prolonged QTc interval and risk of sudden cardiac death in a population of older adults. J Am Coll Cardiol. 2006;47(2):362–7. https://doi.org/10.1016/j.jacc.2005.08.067 . (PMID: 10.1016/j.jacc.2005.08.06716412861)
Schouten EG, Dekker JM, Meppelink P, et al. QT interval prolongation predicts cardiovascular mortality in an apparently healthy population. Circulation. 1991;84(4):1516–23. https://doi.org/10.1161/01.CIR.84.4.1516 . (PMID: 10.1161/01.CIR.84.4.15161914093)
Izumo S, Lompré AM, Matsuoka R, et al. Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy. Interaction between hemodynamic and thyroid hormone-induced signals. J Clin Invest. 1987;79(3):970–977. https://doi.org/10.1172/JCI112908 .
Hu LW, Benvenuti LA, Liberti EA, Carneiro-Ramos MS, Barreto-Chaves MLM. Thyroxine-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin-angiotensin system on myocyte remodeling. Am J Physiol Integr Comp Physiol. 2003;285(6):R1473–80. https://doi.org/10.1152/ajpregu.00269.2003 . (PMID: 10.1152/ajpregu.00269.2003)
Gupte AA, Cordero-Reyes AM, Youker KA, et al. Differential mitochondrial function in remodeled right and nonremodeled left ventricles in pulmonary hypertension. J Card Fail. 2016;22(1):73–81. https://doi.org/10.1016/j.cardfail.2015.09.001 . (PMID: 10.1016/j.cardfail.2015.09.00126370778)
Das AM, Harris DA. Control of mitochondrial ATP synthase in rat cardiomyocytes: effects of thyroid hormone. Biochim Biophys Acta - Mol Basis Dis. 1991;1096(4):284–90. https://doi.org/10.1016/0925-4439(91)90064-G . (PMID: 10.1016/0925-4439(91)90064-G)
Carter LS, Mueller RA, Norfleet EA, Payne FB, Saltzman LS. Hypothyroidism delays ischemia-induced contracture and adenine nucleotide depletion in rat myocardium. Circ Res. 1987;60(5):649–52. https://doi.org/10.1161/01.RES.60.5.649 . (PMID: 10.1161/01.RES.60.5.6493594744)
Sror-Turkel O, El-Khatib N, Sharabi-Nov A, Avraham Y, Merchavy S. Low TSH and low T3 hormone levels as a prognostic for mortality in COVID-19 intensive care patients. Front Endocrinol. 2024;15:1322487. https://doi.org/10.3389/fendo.2024.1322487 . (PMID: 10.3389/fendo.2024.1322487)
Song J-L, Hu J-W, Li L-R, et al. Association of thyroid autoimmunity with extra-thyroid diseases and the risk of mortality among adults: evidence from the NHANES. Front Endocrinol. 2024;15:1323994. https://doi.org/10.3389/fendo.2024.1323994 . (PMID: 10.3389/fendo.2024.1323994)
Cho J, Park J, Yeom J, et al. Thyroid dysfunction and the effect of iodine-deficient parenteral nutrition in very low birth weight infants: a nationwide analysis of a Korean Neonatal Network Database. Nutrients. 2022;14(15):3043. https://doi.org/10.3390/nu14153043 . (PMID: 10.3390/nu14153043358938979331788)
Araruna LVM, de Oliveira DC, Pereira MC, et al. Interplay between thyroid hormone status and pulmonary hypertension in graves’ disease: relevance of the assessment in thyrotoxic and euthyroid patients. Front Endocrinol. 2022;17(4):267–71. https://doi.org/10.1016/j.ejim.2005.11.023 . (PMID: 10.1016/j.ejim.2005.11.023)
Jankauskas SS, Morelli MB, Gambardella J, Lombardi A, Santulli G. Thyroid hormones regulate both cardiovascular and renal mechanisms underlying hypertension. J Clin Hypertens. 2021;23(2):373–81. https://doi.org/10.1111/jch.14152 . (PMID: 10.1111/jch.14152)
Croce L, Zampogna E, Coperchini F, et al. Thyroid hormones modifications among COVID-19 patients undergoing pulmonary rehabilitation. Front Endocrinol. 2023;14:1192561. https://doi.org/10.3389/fendo.2023.1192561 . (PMID: 10.3389/fendo.2023.1192561)
López-Torres M, Romero M, Barja G. Effect of thyroid hormones on mitochondrial oxygen free radical production and DNA oxidative damage in the rat heart. Mol Cell Endocrinol. 2000;168(1–2):127–34. https://doi.org/10.1016/S0303-7207(00)00302-6 . (PMID: 10.1016/S0303-7207(00)00302-611064159)
Asayama K, Dobashi K, Hayashibe H, Megata Y, Kato K. Lipid peroxidation and free radical scavengers in thyroid dysfunction in the rat: a possible mechanism of injury to heart and skeletal muscle in hyperthyroidism. Endocrinology. 1987;121(6):2112–8. https://doi.org/10.1210/endo-121-6-2112 . (PMID: 10.1210/endo-121-6-21122824181)
el Daly ES. Effect of methimazole and fish oil treatment on gentamicin nephrotoxicity in rats. J Pharm Belg. 1997;52(4):149–56. (PMID: 9316341)
Sausen PJ, Elfarra AA, Cooley AJ. Methimazole protection of rats against chemically induced kidney damage in vivo. J Pharmacol Exp Ther. 1992;260(1):393–401. (PMID: 1731048)
Gomez-Arroyo JG, Farkas L, Alhussaini AA, et al. The monocrotaline model of pulmonary hypertension in perspective. Am J Physiol Cell Mol Physiol. 2012;302(4):L363–9. https://doi.org/10.1152/ajplung.00212.2011 . (PMID: 10.1152/ajplung.00212.2011)
Rafikova O, James J, Eccles CA, et al. Early progression of pulmonary hypertension in the monocrotaline model in males is associated with increased lung permeability. Biol Sex Differ. 2020;11(1):11. https://doi.org/10.1186/s13293-020-00289-5 . (PMID: 10.1186/s13293-020-00289-5321885127079376)
Tofovic SP, Salah EM, Mady HH, Jackson EK, Melhem MF. Estradiol metabolites attenuate monocrotaline-induced pulmonary hypertension in rats. J Cardiovasc Pharmacol. 2005;46(4):430–7. https://doi.org/10.1097/01.fjc.0000175878.32920.17 . (PMID: 10.1097/01.fjc.0000175878.32920.1716160593)
فهرسة مساهمة: Keywords: Heart failure; Mitochondria; Pulmonary hypertension; Thyroid hormones
تواريخ الأحداث: Date Created: 20240831 Latest Revision: 20240831
رمز التحديث: 20240902
DOI: 10.1007/s10557-024-07618-5
PMID: 39215901
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-7241
DOI:10.1007/s10557-024-07618-5