دورية أكاديمية

Assessment of poly(diallyl dimethyl ammonium chloride) and lime for surface water treatment (pond, river, and canal water): seasonal variations and correlation analyses.

التفاصيل البيبلوغرافية
العنوان: Assessment of poly(diallyl dimethyl ammonium chloride) and lime for surface water treatment (pond, river, and canal water): seasonal variations and correlation analyses.
المؤلفون: Jabin S; School of Engineering and Technology, Manav Rachna International Institute of Research & Studies, Faridabad, Haryana, India., Kapoor JK; Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana, India., Chadha A; School of Computer Application, Manav Rachna International Institute of Research & Studies, Faridabad, Haryana, India., Gupta A; School of Engineering and Technology, Manav Rachna International Institute of Research & Studies, Faridabad, Haryana, India., Jadoun S; Departamento de Química, Facultad de Ciencias, Sol-ARIS, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile. sjadoun022@gmail.com.
المصدر: Environmental monitoring and assessment [Environ Monit Assess] 2024 Sep 02; Vol. 196 (10), pp. 874. Date of Electronic Publication: 2024 Sep 02.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
أسماء مطبوعة: Publication: 1998- : Dordrecht : Springer
Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
مواضيع طبية MeSH: Oxides*/chemistry , Calcium Compounds*/chemistry , Quaternary Ammonium Compounds*/chemistry , Quaternary Ammonium Compounds*/analysis , Rivers*/chemistry , Seasons* , Water Purification*/methods, Polyethylenes/chemistry ; Water Pollutants, Chemical/analysis ; Ponds/chemistry ; Environmental Monitoring/methods
مستخلص: The present study deals with the assessment of different physicochemical parameters (pH, electrical conductivity (E.C.), turbidity, total dissolved solids (TDS), and dissolved oxygen) in different surface water such as pond, river, and canal water in four different seasons, viz. March, June, September, and December 2023. The research endeavors to assess the impact of a cationic polyelectrolyte, specifically poly(diallyl dimethyl ammonium chloride) (PDADMAC), utilized as a coagulation aid in conjunction with lime for water treatment. Employing a conventional jar test apparatus, turbidity removal from diverse water samples is examined. Furthermore, the samples undergo characterization utilizing X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The study also conducts correlation analyses on various parameters such as electrical conductivity (EC), pH, total dissolved solids (TDS), turbidity of raw water, polyelectrolyte dosage, and percentage of turbidity removal across different water sources. Utilizing the Statistical Package for Social Science (SPSS) software, these analyses aim to establish robust relationships among initial turbidity, temperature, percentage of turbidity removal, dosage of coagulant aid, electrical conductivity, and total dissolved solids (TDS) in pond water, river water, and canal water. A strong positive correlation could be found between the percentage of turbidity removal and the value of initial turbidity of all surface water. However, a negative correlation could be observed between the polyelectrolyte dosage and raw water's turbidity. By elucidating these correlations, the study contributes to a deeper understanding of the effectiveness of PDADMAC and lime in water treatment processes across diverse environmental conditions. This research enhances our comprehension of surface water treatment methodologies and provides valuable insights for optimizing water treatment strategies to address the challenges posed by varying water sources and seasonal fluctuations.
(© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
References: Ahmed, M., Mumtaz, R., Baig, S., & Zaidi, S. M. H. (2022). Assessment of correlation amongst physico-chemical, topographical, geological, lithological and soil type parameters for measuring water quality of Rawal watershed using remote sensing. Water Supply, 22(4), 3645–3660. (PMID: 10.2166/ws.2022.006)
Association, A. P. H. (1926). Standard Methods for The Examination of Water and Wastewater (Vol. 6). American Public Health Association.
Asthana, M., Kumar, A., & Sharma, B. S. (2017). Wastewater treatment. Principles and Applications of Environmental Biotechnology for A sustainable Future, 173–232.
Chekkala, A., Atasoy, M., Williams, C., & Cetecioglu, Z. (2023). Statistical analysis of SARS-CoV-2 using wastewater-based data of Stockholm, Sweden. International Journal of Environmental Research and Public Health, 20(5), 4181. (PMID: 10.3390/ijerph20054181)
Chiavola, A., Di Marcantonio, C., D’Agostini, M., Leoni, S., & Lazzazzara, M. (2023). A combined experimental-modeling approach for turbidity removal optimization in a coagulation–flocculation unit of a drinking water treatment plant. Journal of Process Control, 130, 103068. (PMID: 10.1016/j.jprocont.2023.103068)
Dey, S., Botta, S., Kallam, R., Angadala, R., & Andugala, J. (2021). Seasonal variation in water quality parameters of Gudlavalleru Engineering College pond. Current Research in Green and Sustainable Chemistry, 4, 100058. (PMID: 10.1016/j.crgsc.2021.100058)
Frieder, C. A., Nam, S. H., Martz, T. R., & Levin, L. A. (2012). High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences, 9(10), 3917–3930. (PMID: 10.5194/bg-9-3917-2012)
Galván-Ruiz, M., Hernández, J., Baños, L., Noriega-Montes, J., & Rodríguez-García, M. E. (2009). Characterization of calcium carbonate, calcium oxide, and calcium hydroxide as starting point to the improvement of lime for their use in construction. Journal of Materials in Civil Engineering, 21(11), 694–698. (PMID: 10.1061/(ASCE)0899-1561(2009)21:11(694))
Gautam, D. K. (2011). Effect of pollution on dissolved oxygen concentration in stream of Shivalik Himalayas: A case study. International Journal of Life Science & Pharma Research, 1(1), L-77–80.
Haghiri, S., Daghighi, A., & Moharramzadeh, S. (2018). Optimum coagulant forecasting by modeling jar test experiments using ANNs. Drinking Water Engineering and Science, 11(1), 1–8. (PMID: 10.5194/dwes-11-1-2018)
Hargreaves, J. A., & Tucker, C. S. (2002). Measuring Dissolved Oxygen Concentration in Aquaculture. Southern Regional Aquaculture Center Stoneville, MS, USA, SRAC Publication No. 4601.
Jabin, S., Gupta, P., & Sharma, M. (2021). Polyelectrolytes as a material of value in water treatment: A review. Asian Journal of Water, Environment and Pollution, 18(3), 109–115. (PMID: 10.3233/AJW210035)
Jabin, S., & Kapoor, J. K. (2020). Role of polyelectrolytes in the treatment of water and wastewater BT - Sustainable green chemical processes and their allied applications. In Inamuddin & A. Asiri (Eds.), (pp. 289–309). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-42284-4_10.
Jabin, S., Kapoor, J. K., Jadoun, S., Chandna, N., & Chauhan, N. P. S. (2023). Synthesis and characterization of polyamine-based polyelectrolytes for wastewater treatment in the sugar industry. Journal of Molecular Structure, 1275, 134573. https://doi.org/10.1016/J.MOLSTRUC.2022.134573. (PMID: 10.1016/J.MOLSTRUC.2022.134573)
Kapoor, J. K., Jabin, S., & Bhatia, H. S. (2015). Optimization of coagulation-flocculation process for food industry waste water treatment using polyelectrolytes with inorganic coagulants. Journal of the Indian Chemical Society, 92, 1697–1703.
Li, H. Y., Xu, J., & Xu, R. Q. (2013). The effect of temperature on the water quality of lake. Advanced Materials Research, 821, 1001–1004. (PMID: 10.4028/www.scientific.net/AMR.821-822.1001)
Mehta, N. K., & Kumari, A. (2022). Study of water quality using of physico-chemical parameters of two perennial fish ponds of Darbhanga. International Journal of Fishries and Aquatic Studies, 10(3), 128–132.
Muthuraman, G., & Sasikala, S. (2014). Removal of turbidity from drinking water using natural coagulants. Journal of Industrial and Engineering Chemistry, 20(4), 1727–1731. (PMID: 10.1016/j.jiec.2013.08.023)
Nasrazadani, S., & Eureste, E. (2008). Application of FTIR for quantitative lime analysis. www.ntis.gov . Accessed 27 February 2024.
Panda, P. K., Panda, R. B., & Dash, P. K. (2018). The study of water quality and pearson’s correlation coefficients among different physico-chemical parameters of River Salandi, Bhadrak, Odisha. India. American Journal of Water Resources, 6(4), 146–155.
Paul, M. J., Coffey, R., Stamp, J., & Johnson, T. (2019). A review of water quality responses to air temperature and precipitation changes 1: Flow, water temperature, saltwater intrusion. JAWRA Journal of the American Water Resources Association, 55(4), 824–843. (PMID: 10.1111/1752-1688.12710)
Piaskowski, K., Świderska-Dąbrowska, R., & Dąbrowski, T. (2023). Impact of cationic polyelectrolytes on activated sludge morphology and biological wastewater treatment in a Sequential Batch Reactor (SBR). Journal of Water Process Engineering, 52, 103500. (PMID: 10.1016/j.jwpe.2023.103500)
Pires, J. (2015). Simple analysis of historical lime mortars. Journal of Chemical Education, 92(3), 521–523. https://doi.org/10.1021/ed500336p. (PMID: 10.1021/ed500336p)
Roy, M., & Shamim, F. (2020). Research on the impact of industrial pollution on River Ganga: A Review. International Journal of Prevention and Control of Industrial Pollution, 6(1), 43–51.
Sahu, M., Shrivastava, A., Jhariya, D. C., Diwan, S., & Subhadarsini, J. (2024). Evaluation of correlation of physicochemical parameters and major ions present in groundwater of raipur using discretization. Measurement: Sensors, 34, 101278.
Sánchez-Martín, J., Ghebremichael, K., & Beltrán-Heredia, J. (2010). Comparison of single-step and two-step purified coagulants from Moringa oleifera seed for turbidity and DOC removal. Bioresource Technology, 101(15), 6259–6261. (PMID: 10.1016/j.biortech.2010.02.072)
Sarang, A., Parsa, S., Ahmadi, A., & Azarnivand, A. R. (2018). Analysis of the relationship between EC and TDS and their changes in the Karaj River. In 11th international Congress on Civil Engineering at: University of Tehran, Tehran, Iran (Vol. 7).
Shroff, P., Vashi, R. T., Champaneri, V. A., & Patel, K. K. (2015). Correlation study among water quality parameters of groundwater of Valsad district of south Gujarat (India). Journal of Fundamental and Applied Sciences, 7(3), 340–349. (PMID: 10.4314/jfas.v7i3.3)
Singh, K. P., Malik, A., & Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—a case study. Analytica Chimica Acta, 538(1–2), 355–374. (PMID: 10.1016/j.aca.2005.02.006)
Soros, A., Amburgey, J. E., Stauber, C. E., Sobsey, M. D., & Casanova, L. M. (2019). Turbidity reduction in drinking water by coagulation-flocculation with chitosan polymers. Journal of Water and Health, 17(2), 204–218. (PMID: 10.2166/wh.2019.114)
Tyagi, C., & Sharma, A. (2016). Optimization of structural and dielectric properties of CdSe loaded poly (diallyl dimethyl ammonium chloride) polymer in a desired frequency and temperature window. Journal of Applied Physics, 119(1).
Voulvoulis, N. (2018). Water reuse from a circular economy perspective and potential risks from an unregulated approach. Current Opinion in Environmental Science & Health, 2, 32–45. (PMID: 10.1016/j.coesh.2018.01.005)
Wang, Y., Yang, J., & Chang, J. (2019). Development of a coupled quantity-quality-environment water allocation model applying the optimization-simulation method. Journal of Cleaner Production, 213, 944–955. (PMID: 10.1016/j.jclepro.2018.12.065)
Yadav, S., & Goyal, V. C. (2022). Current status of ponds in India: A framework for restoration, policies and circular economy. Wetlands, 42(8), 107. (PMID: 10.1007/s13157-022-01624-9)
فهرسة مساهمة: Keywords: Different water; Polyelectrolyte; SPSS software; Surface water; Turbidity
المشرفين على المادة: 0 (Oxides)
C7X2M0VVNH (lime)
0 (Calcium Compounds)
0 (Quaternary Ammonium Compounds)
26062-79-3 (poly-N,N-dimethyl-N,N-diallylammonium chloride)
0 (Polyethylenes)
0 (Water Pollutants, Chemical)
تواريخ الأحداث: Date Created: 20240902 Date Completed: 20240902 Latest Revision: 20240902
رمز التحديث: 20240902
DOI: 10.1007/s10661-024-13004-3
PMID: 39222246
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-2959
DOI:10.1007/s10661-024-13004-3