دورية أكاديمية

Hormonal influence: unraveling the impact of sex hormones on vascular smooth muscle cells.

التفاصيل البيبلوغرافية
العنوان: Hormonal influence: unraveling the impact of sex hormones on vascular smooth muscle cells.
المؤلفون: Jia K; Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China., Luo X; Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China.; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China., Yi J; Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China. jingyany@swmu.edu.cn., Zhang C; Department of Cardiology, The Affiliated Hospital, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China. zhangchx999@163.com.
المصدر: Biological research [Biol Res] 2024 Sep 04; Vol. 57 (1), pp. 61. Date of Electronic Publication: 2024 Sep 04.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Biomed Central, Ltd Country of Publication: England NLM ID: 9308271 Publication Model: Electronic Cited Medium: Internet ISSN: 0717-6287 (Electronic) Linking ISSN: 07169760 NLM ISO Abbreviation: Biol Res Subsets: MEDLINE
أسماء مطبوعة: Publication: 2014- : London : Biomed Central, Ltd
Original Publication: Santiago : Society of Biology of Chile, [1992-
مواضيع طبية MeSH: Muscle, Smooth, Vascular* , Gonadal Steroid Hormones*/physiology , Gonadal Steroid Hormones*/pharmacology , Myocytes, Smooth Muscle*/physiology , Myocytes, Smooth Muscle*/drug effects , Myocytes, Smooth Muscle*/metabolism, Humans ; Animals ; Phenotype ; Signal Transduction/physiology
مستخلص: Sex hormones play a pivotal role as endocrine hormones that exert profound effects on the biological characteristics and vascular function of vascular smooth muscle cells (VSMCs). By modulating intracellular signaling pathways, activating nuclear receptors, and regulating gene expression, sex hormones intricately influence the morphology, function, and physiological state of VSMCs, thereby impacting the biological properties of vascular contraction, relaxation, and growth. Increasing evidence suggests that abnormal phenotypic changes in VSMCs contribute to the initiation of vascular diseases, including atherosclerosis. Therefore, understanding the factors governing phenotypic alterations in VSMCs and elucidating the underlying mechanisms can provide crucial insights for refining interventions targeted at vascular diseases. Additionally, the varying levels of different types of sex hormones in the human body, influenced by sex and age, may also affect the phenotypic conversion of VSMCs. This review aims to explore the influence of sex hormones on the phenotypic switching of VSMCs and the development of associated vascular diseases in the human body.
(© 2024. The Author(s).)
References: Naamneh Elzenaty R, du Toit T, Fluck CE. Basics of androgen synthesis and action. Best Pract Res Clin Endocrinol Metab. 2022;36(4):101665. https://doi.org/10.1016/j.beem.2022.101665 . (PMID: 10.1016/j.beem.2022.10166535595638)
Miao CY, Li ZY. The role of perivascular adipose tissue in vascular smooth muscle cell growth. Br J Pharmacol. 2012;165(3):643–58. https://doi.org/10.1111/j.1476-5381.2011.01404.x . (PMID: 10.1111/j.1476-5381.2011.01404.x214702023315037)
Sorokin V, Vickneson K, Kofidis T, Woo CC, Lin XY, Foo R, et al. Role of vascular smooth muscle cell plasticity and interactions in Vessel Wall inflammation. Front Immunol. 2020;11:599415. https://doi.org/10.3389/fimmu.2020.599415 . (PMID: 10.3389/fimmu.2020.599415333244167726011)
Song J, Wan Y, Rolfe BE, Campbell JH, Campbell GR. Effect of estrogen on vascular smooth muscle cells is dependent upon cellular phenotype. Atherosclerosis. 1998;140(1):97–104. https://doi.org/10.1016/s0021-9150(98)00122-1 . (PMID: 10.1016/s0021-9150(98)00122-19733220)
Touyz RM, Alves-Lopes R, Rios FJ, Camargo LL, Anagnostopoulou A, Arner A, et al. Vascular smooth muscle contraction in hypertension. Cardiovasc Res. 2018;114(4):529–39. https://doi.org/10.1093/cvr/cvy023 . (PMID: 10.1093/cvr/cvy023293943315852517)
Mendelsohn ME, Karas RH. Estrogen and the blood vessel wall. Curr Opin Cardiol. 1994;9(5):619–26. https://doi.org/10.1097/00001573-199409000-00018 . (PMID: 10.1097/00001573-199409000-000187987043)
Dehaini H, Fardoun M, Abou-Saleh H, El-Yazbi A, Eid AA, Eid AH. Estrogen in vascular smooth muscle cells: a friend or a foe? Vascul Pharmacol. 2018;111:15–21. https://doi.org/10.1016/j.vph.2018.09.001 . (PMID: 10.1016/j.vph.2018.09.00130227233)
Ruehlmann DO, Mann GE. Actions of oestrogen on vascular endothelial and smooth-muscle cells. Biochem Soc Trans. 1997;25(1):40–5. https://doi.org/10.1042/bst0250040 . (PMID: 10.1042/bst02500409056840)
Zha B, Qiu P, Zhang C, Li X, Chen Z. GPR30 promotes the phenotypic switching of vascular smooth muscle cells via activating the AKT and ERK pathways. Onco Targets Ther. 2020;13:3801–8. https://doi.org/10.2147/OTT.S244128 . (PMID: 10.2147/OTT.S244128324401487212987)
Kopp J, Collin O, Villar M, Mullins D, Bergh A, Hokfelt T. Regulation of neuropeptide Y Y1 receptors by testosterone in vascular smooth muscle cells in rat testis. Neuroendocrinology. 2008;88(3):216–26. https://doi.org/10.1159/000138250 . (PMID: 10.1159/00013825018535365)
Yerly A, van der Vorst EPC, Baumgartner I, Bernhard SM, Schindewolf M, Doring Y. Sex-specific and hormone-related differences in vascular remodelling in atherosclerosis. Eur J Clin Invest. 2023;53(1):e13885. https://doi.org/10.1111/eci.13885 . (PMID: 10.1111/eci.1388536219492)
Stone JC, MacDonald MJ. The impacts of endogenous progesterone and exogenous progestin on vascular endothelial cell, and smooth muscle cell function: a narrative review. Vascul Pharmacol. 2023;152:107209. https://doi.org/10.1016/j.vph.2023.107209 . (PMID: 10.1016/j.vph.2023.10720937591444)
Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84(3):767–801. https://doi.org/10.1152/physrev.00041.2003 . (PMID: 10.1152/physrev.00041.200315269336)
Rensen SS, Doevendans PA, van Eys GJ. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J. 2007;15(3):100–8. https://doi.org/10.1007/BF03085963 . (PMID: 10.1007/BF03085963176126681847757)
Rzucidlo EM, Martin KA, Powell RJ. Regulation of vascular smooth muscle cell differentiation. J Vasc Surg. 2007;45 Suppl A(6):A25-32. https://doi.org/10.1016/j.jvs.2007.03.001.
Gao H, Steffen MC, Ramos KS. Osteopontin regulates alpha-smooth muscle actin and calponin in vascular smooth muscle cells. Cell Biol Int. 2012;36(2):155–61. https://doi.org/10.1042/CBI20100240 . (PMID: 10.1042/CBI2010024022032345)
McDonald OG, Wamhoff BR, Hoofnagle MH, Owens GK. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest. 2006;116(1):36–48. https://doi.org/10.1172/JCI26505 . (PMID: 10.1172/JCI26505163954031323266)
Long X, Bell RD, Gerthoffer WT, Zlokovic BV, Miano JM. Myocardin is sufficient for a smooth muscle-like contractile phenotype. Arterioscler Thromb Vasc Biol. 2008;28(8):1505–10. https://doi.org/10.1161/ATVBAHA.108.166066 . (PMID: 10.1161/ATVBAHA.108.166066184513342574857)
Horita HN, Simpson PA, Ostriker A, Furgeson S, Van Putten V, Weiser-Evans MC, et al. Serum response factor regulates expression of phosphatase and tensin homolog through a microRNA network in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2011;31(12):2909–19. https://doi.org/10.1161/ATVBAHA.111.233585 . (PMID: 10.1161/ATVBAHA.111.233585219409493220738)
Shankman LS, Gomez D, Cherepanova OA, Salmon M, Alencar GF, Haskins RM, et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med. 2015;21(6):628–37. https://doi.org/10.1038/nm.3866 . (PMID: 10.1038/nm.3866259853644552085)
Van Der Heide LP, Hoekman MF, Smidt MP. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J. 2004;380(Pt 2):297–309. https://doi.org/10.1042/BJ20040167 . (PMID: 10.1042/BJ2004016715005655)
Wamhoff BR, Hoofnagle MH, Burns A, Sinha S, McDonald OG, Owens GK. A G/C element mediates repression of the SM22alpha promoter within phenotypically modulated smooth muscle cells in experimental atherosclerosis. Circ Res. 2004;95(10):981–8. https://doi.org/10.1161/01.RES.0000147961.09840.fb . (PMID: 10.1161/01.RES.0000147961.09840.fb15486317)
Alencar GF, Owsiany KM, Karnewar S, Sukhavasi K, Mocci G, Nguyen AT, et al. Stem cell pluripotency genes Klf4 and Oct4 regulate Complex SMC phenotypic changes critical in late-stage atherosclerotic lesion pathogenesis. Circulation. 2020;142(21):2045–59. https://doi.org/10.1161/CIRCULATIONAHA.120.046672 . (PMID: 10.1161/CIRCULATIONAHA.120.046672326745997682794)
Tang Y, Yu S, Liu Y, Zhang J, Han L, Xu Z. MicroRNA-124 controls human vascular smooth muscle cell phenotypic switch via Sp1. Am J Physiol Heart Circ Physiol. 2017;313(3):H641–9. https://doi.org/10.1152/ajpheart.00660.2016 . (PMID: 10.1152/ajpheart.00660.201628667053)
Torella D, Iaconetti C, Catalucci D, Ellison GM, Leone A, Waring CD, et al. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res. 2011;109(8):880–93. https://doi.org/10.1161/CIRCRESAHA.111.240150 . (PMID: 10.1161/CIRCRESAHA.111.24015021852550)
Davis-Dusenbery BN, Wu C, Hata A. Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation. Arterioscler Thromb Vasc Biol. 2011;31(11):2370–7. https://doi.org/10.1161/ATVBAHA.111.226670 . (PMID: 10.1161/ATVBAHA.111.226670220117494429757)
Sun H, Cai S, Zhang M, Zhao J, Wei S, Luo Y, et al. MicroRNA-206 regulates vascular smooth muscle cell phenotypic switch and vascular neointimal formation. Cell Biol Int. 2017;41(7):739–48. https://doi.org/10.1002/cbin.10768 . (PMID: 10.1002/cbin.1076828328152)
Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. 2009;104(4):476–87. https://doi.org/10.1161/CIRCRESAHA.108.185363 . (PMID: 10.1161/CIRCRESAHA.108.185363191508852728290)
Zeng Z, Xia L, Fan S, Zheng J, Qin J, Fan X, et al. Circular RNA CircMAP3K5 acts as a MicroRNA-22-3p sponge to Promote Resolution of Intimal Hyperplasia Via TET2-Mediated smooth muscle cell differentiation. Circulation. 2021;143(4):354–71. https://doi.org/10.1161/CIRCULATIONAHA.120.049715 . (PMID: 10.1161/CIRCULATIONAHA.120.04971533207953)
Rong ZH, Chang NB, Yao QP, Li T, Zhu XL, Cao Y, et al. Suppression of circDcbld1 alleviates Intimal Hyperplasia in Rat Carotid artery by targeting miR-145-3p/Neuropilin-1. Mol Ther Nucleic Acids. 2019;18:999–1008. https://doi.org/10.1016/j.omtn.2019.10.023 . (PMID: 10.1016/j.omtn.2019.10.023317789586889766)
Hall IF, Climent M, Quintavalle M, Farina FM, Schorn T, Zani S, et al. Circ_Lrp6, a circular RNA enriched in vascular smooth muscle cells, acts as a sponge regulating miRNA-145 function. Circ Res. 2019;124(4):498–510. https://doi.org/10.1161/CIRCRESAHA.118.314240 . (PMID: 10.1161/CIRCRESAHA.118.31424030582454)
Frismantiene A, Philippova M, Erne P, Resink TJ. Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cell Signal. 2018;52:48–64. https://doi.org/10.1016/j.cellsig.2018.08.019 . (PMID: 10.1016/j.cellsig.2018.08.01930172025)
Tian L, Chen K, Cao J, Han Z, Wang Y, Gao L, et al. Galectin–3 induces the phenotype transformation of human vascular smooth muscle cells via the canonical wnt signaling. Mol Med Rep. 2017;15(6):3840–6. https://doi.org/10.3892/mmr.2017.6429 . (PMID: 10.3892/mmr.2017.642928393190)
Yap C, Mieremet A, de Vries CJM, Micha D, de Waard V. Six shades of vascular smooth muscle cells illuminated by KLF4 (Kruppel-Like factor 4). Arterioscler Thromb Vasc Biol. 2021;41(11):2693–707. https://doi.org/10.1161/ATVBAHA.121.316600 . (PMID: 10.1161/ATVBAHA.121.316600344704778545254)
Pan H, Xue C, Auerbach BJ, Fan J, Bashore AC, Cui J, et al. Single-cell Genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation. 2020;142(21):2060–75. https://doi.org/10.1161/CIRCULATIONAHA.120.048378 . (PMID: 10.1161/CIRCULATIONAHA.120.048378329624128104264)
Feil S, Fehrenbacher B, Lukowski R, Essmann F, Schulze-Osthoff K, Schaller M, et al. Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ Res. 2014;115(7):662–7. https://doi.org/10.1161/CIRCRESAHA.115.304634 . (PMID: 10.1161/CIRCRESAHA.115.30463425070003)
Allahverdian S, Chehroudi AC, McManus BM, Abraham T, Francis GA. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation. 2014;129(15):1551–9. https://doi.org/10.1161/CIRCULATIONAHA.113.005015 . (PMID: 10.1161/CIRCULATIONAHA.113.00501524481950)
Wang Y, Dubland JA, Allahverdian S, Asonye E, Sahin B, Jaw JE, et al. Smooth Muscle Cells Contribute the Majority of Foam Cells in ApoE (apolipoprotein E)-Deficient mouse atherosclerosis. Arterioscler Thromb Vasc Biol. 2019;39(5):876–87. https://doi.org/10.1161/ATVBAHA.119.312434 . (PMID: 10.1161/ATVBAHA.119.312434307867406482082)
Wirka RC, Wagh D, Paik DT, Pjanic M, Nguyen T, Miller CL, et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat Med. 2019;25(8):1280–9. https://doi.org/10.1038/s41591-019-0512-5 . (PMID: 10.1038/s41591-019-0512-5313590017274198)
Hartmann F, Gorski DJ, Newman AAC, Homann S, Petz A, Owsiany KM, et al. SMC-Derived Hyaluronan modulates vascular SMC phenotype in murine atherosclerosis. Circ Res. 2021;129(11):992–1005. https://doi.org/10.1161/CIRCRESAHA.120.318479 . (PMID: 10.1161/CIRCRESAHA.120.318479346153698637935)
Xiao X, Liu YZ, Cheng ZB, Sun JX, Shao YD, Qu SL, et al. Adipokines in vascular calcification. Clin Chim Acta. 2021;516:15–26. https://doi.org/10.1016/j.cca.2021.01.009 . (PMID: 10.1016/j.cca.2021.01.00933476587)
Kyotani Y, Takasawa S, Yoshizumi M. Proliferative pathways of vascular smooth muscle cells in response to intermittent hypoxia. Int J Mol Sci. 2019;20(11). https://doi.org/10.3390/ijms20112706 .
Zhao D, Li J, Xue C, Feng K, Liu L, Zeng P, et al. TL1A inhibits atherosclerosis in apoe-deficient mice by regulating the phenotype of vascular smooth muscle cells. J Biol Chem. 2020;295(48):16314–27. https://doi.org/10.1074/jbc.RA120.015486 . (PMID: 10.1074/jbc.RA120.015486329631087705304)
Tierney JW, Evans BC, Cheung-Flynn J, Wang B, Colazo JM, Polcz ME, et al. Therapeutic MK2 inhibition blocks pathological vascular smooth muscle cell phenotype switch. JCI Insight. 2021;6(19):e142339. https://doi.org/10.1172/jci.insight.142339 . (PMID: 10.1172/jci.insight.142339346228038525639)
Vatner SF, Zhang J, Vyzas C, Mishra K, Graham RM, Vatner DE. Vascular stiffness in aging and disease. Front Physiol. 2021;12:762437. https://doi.org/10.3389/fphys.2021.762437 . (PMID: 10.3389/fphys.2021.762437349500488688960)
Chen PY, Qin L, Li G, Malagon-Lopez J, Wang Z, Bergaya S et al. Smooth Muscle Cell Reprogramming in Aortic Aneurysms. Cell Stem Cell. 2020;26(4):542 – 57 e11. https://doi.org/10.1016/j.stem.2020.02.013.
Nolasco P, Fernandes CG, Ribeiro-Silva JC, Oliveira PVS, Sacrini M, de Brito IV, et al. Impaired vascular smooth muscle cell force-generating capacity and phenotypic deregulation in Marfan Syndrome mice. Biochim Biophys Acta Mol Basis Dis. 2020;1866(1):165587. https://doi.org/10.1016/j.bbadis.2019.165587 . (PMID: 10.1016/j.bbadis.2019.16558731678158)
Dobnikar L, Taylor AL, Chappell J, Oldach P, Harman JL, Oerton E, et al. Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels. Nat Commun. 2018;9(1):4567. https://doi.org/10.1038/s41467-018-06891-x . (PMID: 10.1038/s41467-018-06891-x303857456212435)
Wang C, Han M, Zhao XM, Wen JK. Kruppel-like factor 4 is required for the expression of vascular smooth muscle cell differentiation marker genes induced by all-trans retinoic acid. J Biochem. 2008;144(3):313–21. https://doi.org/10.1093/jb/mvn068 . (PMID: 10.1093/jb/mvn06818511453)
Garvey SM, Sinden DS, Schoppee Bortz PD, Wamhoff BR. Cyclosporine up-regulates Kruppel-like factor-4 (KLF4) in vascular smooth muscle cells and drives phenotypic modulation in vivo. J Pharmacol Exp Ther. 2010;333(1):34–42. https://doi.org/10.1124/jpet.109.163949 . (PMID: 10.1124/jpet.109.163949200898062846029)
Majesky MW, Horita H, Ostriker A, Lu S, Regan JN, Bagchi A, et al. Differentiated smooth muscle cells generate a subpopulation of Resident Vascular Progenitor cells in the Adventitia regulated by Klf4. Circ Res. 2017;120(2):296–311. https://doi.org/10.1161/CIRCRESAHA.116.309322 . (PMID: 10.1161/CIRCRESAHA.116.30932227834190)
Yoshida T, Kaestner KH, Owens GK. Conditional deletion of Kruppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury. Circ Res. 2008;102(12):1548–57. https://doi.org/10.1161/CIRCRESAHA.108.176974 . (PMID: 10.1161/CIRCRESAHA.108.176974184834112633447)
Alexander MR, Owens GK. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu Rev Physiol. 2012;74:13–40. https://doi.org/10.1146/annurev-physiol-012110-142315 . (PMID: 10.1146/annurev-physiol-012110-14231522017177)
Chattopadhyay A, Kwartler CS, Kaw K, Li Y, Kaw A, Chen J, et al. Cholesterol-Induced phenotypic modulation of Smooth Muscle Cells to Macrophage/Fibroblast-like cells is driven by an unfolded protein response. Arterioscler Thromb Vasc Biol. 2021;41(1):302–16. https://doi.org/10.1161/ATVBAHA.120.315164 . (PMID: 10.1161/ATVBAHA.120.31516433028096)
Zhao G, Lu H, Chang Z, Zhao Y, Zhu T, Chang L, et al. Single-cell RNA sequencing reveals the cellular heterogeneity of aneurysmal infrarenal abdominal aorta. Cardiovasc Res. 2021;117(5):1402–16. https://doi.org/10.1093/cvr/cvaa214 . (PMID: 10.1093/cvr/cvaa21432678909)
Tang J, Wang H, Huang X, Li F, Zhu H, Li Y, et al. Arterial Sca1(+) vascular stem cells generate De Novo Smooth Muscle for Artery Repair and regeneration. Cell Stem Cell. 2020;26(1):81–e964. https://doi.org/10.1016/j.stem.2019.11.010 . (PMID: 10.1016/j.stem.2019.11.01031883835)
Sartore S, Chiavegato A, Faggin E, Franch R, Puato M, Ausoni S, et al. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant. Circ Res. 2001;89(12):1111–21. https://doi.org/10.1161/hh2401.100844 . (PMID: 10.1161/hh2401.10084411739275)
Hu Y, Zhang Z, Torsney E, Afzal AR, Davison F, Metzler B, et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest. 2004;113(9):1258–65. https://doi.org/10.1172/JCI19628 . (PMID: 10.1172/JCI1962815124016398426)
Passman JN, Dong XR, Wu SP, Maguire CT, Hogan KA, Bautch VL, et al. A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1 + smooth muscle progenitor cells. Proc Natl Acad Sci U S A. 2008;105(27):9349–54. https://doi.org/10.1073/pnas.0711382105 . (PMID: 10.1073/pnas.0711382105185916702453724)
Kramann R, Goettsch C, Wongboonsin J, Iwata H, Schneider RK, Kuppe C, et al. Adventitial MSC-like cells are progenitors of vascular smooth muscle cells and drive vascular calcification in chronic kidney disease. Cell Stem Cell. 2016;19(5):628–42. https://doi.org/10.1016/j.stem.2016.08.001 . (PMID: 10.1016/j.stem.2016.08.001276182185097006)
Wang H, Zhao H, Zhu H, Li Y, Tang J, Li Y, et al. Sca1(+) cells minimally contribute to smooth muscle cells in atherosclerosis. Circ Res. 2021;128(1):133–5. https://doi.org/10.1161/CIRCRESAHA.120.317972 . (PMID: 10.1161/CIRCRESAHA.120.31797233146591)
Holmes C, Stanford WL. Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells. 2007;25(6):1339–47. https://doi.org/10.1634/stemcells.2006-0644 . (PMID: 10.1634/stemcells.2006-064417379763)
Wolff LI, Hartmann C. A second Career for chondrocytes-Transformation into osteoblasts. Curr Osteoporos Rep. 2019;17(3):129–37. https://doi.org/10.1007/s11914-019-00511-3 . (PMID: 10.1007/s11914-019-00511-330949840)
van Andel MM, Groenink M, Zwinderman AH, de Mulder BJM. The potential Beneficial effects of Resveratrol on Cardiovascular complications in Marfan Syndrome Patients(-)Insights from Rodent-Based Animal studies. Int J Mol Sci. 2019;20(5):1122. https://doi.org/10.3390/ijms20051122 . (PMID: 10.3390/ijms20051122308415776429290)
Iqbal F, Lupieri A, Aikawa M, Aikawa E. Harnessing single-cell RNA sequencing to Better Understand how diseased cells behave the way they do in Cardiovascular Disease. Arterioscler Thromb Vasc Biol. 2021;41(2):585–600. https://doi.org/10.1161/ATVBAHA.120.314776 . (PMID: 10.1161/ATVBAHA.120.31477633327741)
Durham AL, Speer MY, Scatena M, Giachelli CM, Shanahan CM. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res. 2018;114(4):590–600. https://doi.org/10.1093/cvr/cvy010 . (PMID: 10.1093/cvr/cvy010295142025852633)
Voelkl J, Lang F, Eckardt KU, Amann K, Kuro OM, Pasch A, et al. Signaling pathways involved in vascular smooth muscle cell calcification during hyperphosphatemia. Cell Mol Life Sci. 2019;76(11):2077–91. https://doi.org/10.1007/s00018-019-03054-z . (PMID: 10.1007/s00018-019-03054-z308870976502780)
Yoshida CA, Komori H, Maruyama Z, Miyazaki T, Kawasaki K, Furuichi T, et al. SP7 inhibits osteoblast differentiation at a late stage in mice. PLoS ONE. 2012;7(3):e32364. https://doi.org/10.1371/journal.pone.0032364 . (PMID: 10.1371/journal.pone.0032364223967603292551)
Derwall M, Malhotra R, Lai CS, Beppu Y, Aikawa E, Seehra JS, et al. Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32(3):613–22. https://doi.org/10.1161/ATVBAHA.111.242594 . (PMID: 10.1161/ATVBAHA.111.24259422223731)
Tyson KL, Reynolds JL, McNair R, Zhang Q, Weissberg PL, Shanahan CM. Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler Thromb Vasc Biol. 2003;23(3):489–94. https://doi.org/10.1161/01.ATV.0000059406.92165.31 . (PMID: 10.1161/01.ATV.0000059406.92165.3112615658)
Loebel C, Czekanska EM, Bruderer M, Salzmann G, Alini M, Stoddart MJ. In vitro osteogenic potential of human mesenchymal stem cells is predicted by Runx2/Sox9 ratio. Tissue Eng Part A. 2015;21(1–2):115–23. https://doi.org/10.1089/ten.TEA.2014.0096 . (PMID: 10.1089/ten.TEA.2014.009624980654)
Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108(1):17–29. https://doi.org/10.1016/s0092-8674(01)00622-5 . (PMID: 10.1016/s0092-8674(01)00622-511792318)
Montezano AC, Zimmerman D, Yusuf H, Burger D, Chignalia AZ, Wadhera V, et al. Vascular smooth muscle cell differentiation to an osteogenic phenotype involves TRPM7 modulation by magnesium. Hypertension. 2010;56(3):453–62. https://doi.org/10.1161/HYPERTENSIONAHA.110.152058 . (PMID: 10.1161/HYPERTENSIONAHA.110.15205820696983)
da Silva RA, da Zambuzzi SFG. Osteogenic gene markers are epigenetically reprogrammed during contractile-to-calcifying vascular smooth muscle cell phenotype transition. Cell Signal. 2020;66:109458. https://doi.org/10.1016/j.cellsig.2019.109458 . (PMID: 10.1016/j.cellsig.2019.10945831678252)
Tyson J, Bundy K, Roach C, Douglas H, Ventura V, Segars MF, et al. Mechanisms of the Osteogenic Switch of Smooth Muscle Cells in vascular calcification: WNT signaling, BMPs, mechanotransduction, and EndMT. Bioeng (Basel). 2020;7(3):88. https://doi.org/10.3390/bioengineering7030088 . (PMID: 10.3390/bioengineering7030088)
Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res. 2016;118(4):692–702. https://doi.org/10.1161/CIRCRESAHA.115.306361 . (PMID: 10.1161/CIRCRESAHA.115.306361268929674762053)
Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460(7256):705–10. https://doi.org/10.1038/nature08195 . (PMID: 10.1038/nature08195195783582769203)
Wolf MP, Hunziker P. Atherosclerosis: insights into Vascular Pathobiology and Outlook to Novel treatments. J Cardiovasc Transl Res. 2020;13(5):744–57. https://doi.org/10.1007/s12265-020-09961-y . (PMID: 10.1007/s12265-020-09961-y32072564)
Andreeva ER, Pugach IM, Orekhov AN. Subendothelial smooth muscle cells of human aorta express macrophage antigen in situ and in vitro. Atherosclerosis. 1997;135(1):19–27. https://doi.org/10.1016/s0021-9150(97)00136-6 . (PMID: 10.1016/s0021-9150(97)00136-69395269)
Rong JX, Shapiro M, Trogan E, Fisher EA. Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc Natl Acad Sci U S A. 2003;100(23):13531–6. https://doi.org/10.1073/pnas.1735526100 . (PMID: 10.1073/pnas.173552610014581613263848)
Castiglioni S, Monti M, Arnaboldi L, Canavesi M, Ainis Buscherini G, Calabresi L, et al. ABCA1 and HDL(3) are required to modulate smooth muscle cells phenotypic switch after cholesterol loading. Atherosclerosis. 2017;266:8–15. https://doi.org/10.1016/j.atherosclerosis.2017.09.012 . (PMID: 10.1016/j.atherosclerosis.2017.09.01228946038)
Bao Z, Li L, Geng Y, Yan J, Dai Z, Shao C, et al. Advanced Glycation End products induce vascular smooth muscle cell-derived foam cell formation and transdifferentiate to a macrophage-like State. Mediators Inflamm. 2020;2020:6850187. https://doi.org/10.1155/2020/6850187 . (PMID: 10.1155/2020/6850187328316377428884)
Baum J, Duffy HS. Fibroblasts and myofibroblasts: what are we talking about? J Cardiovasc Pharmacol. 2011;57(4):376–9. https://doi.org/10.1097/FJC.0b013e3182116e39 . (PMID: 10.1097/FJC.0b013e3182116e39212974933077448)
Dettman RW, Denetclaw W Jr., Ordahl CP, Bristow J. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol. 1998;193(2):169–81. https://doi.org/10.1006/dbio.1997.8801 . (PMID: 10.1006/dbio.1997.88019473322)
Winter EM, Gittenberger-de Groot AC. Epicardium-derived cells in cardiogenesis and cardiac regeneration. Cell Mol Life Sci. 2007;64(6):692–703. https://doi.org/10.1007/s00018-007-6522-3 . (PMID: 10.1007/s00018-007-6522-3173803102778661)
Medley SC, Rathnakar BH, Georgescu C, Wren JD, Olson LE. Fibroblast-specific Stat1 deletion enhances the myofibroblast phenotype during tissue repair. Wound Repair Regen. 2020;28(4):448–59. https://doi.org/10.1111/wrr.12807 . (PMID: 10.1111/wrr.12807321757007321860)
Pedroza AJ, Tashima Y, Shad R, Cheng P, Wirka R, Churovich S, et al. Single-cell transcriptomic profiling of vascular smooth muscle cell phenotype modulation in Marfan Syndrome aortic aneurysm. Arterioscler Thromb Vasc Biol. 2020;40(9):2195–211. https://doi.org/10.1161/ATVBAHA.120.314670 . (PMID: 10.1161/ATVBAHA.120.314670326986867484233)
Lu S, Jolly AJ, Strand KA, Dubner AM, Mutryn MF, Moulton KS, et al. Smooth muscle-derived progenitor cell myofibroblast differentiation through KLF4 downregulation promotes arterial remodeling and fibrosis. JCI Insight. 2020;5(23):e139445. https://doi.org/10.1172/jci.insight.139445 . (PMID: 10.1172/jci.insight.139445331195497714399)
Long JZ, Svensson KJ, Tsai L, Zeng X, Roh HC, Kong X, et al. A smooth muscle-like origin for beige adipocytes. Cell Metab. 2014;19(5):810–20. https://doi.org/10.1016/j.cmet.2014.03.025 . (PMID: 10.1016/j.cmet.2014.03.025247096244052772)
Shamsi F, Piper M, Ho LL, Huang TL, Gupta A, Streets A, et al. Vascular smooth muscle-derived Trpv1(+) progenitors are a source of cold-induced thermogenic adipocytes. Nat Metab. 2021;3(4):485–95. https://doi.org/10.1038/s42255-021-00373-z . (PMID: 10.1038/s42255-021-00373-z338466388076094)
Byon CH, Sun Y, Chen J, Yuan K, Mao X, Heath JM, et al. Runx2-upregulated receptor activator of nuclear factor kappaB ligand in calcifying smooth muscle cells promotes migration and osteoclastic differentiation of macrophages. Arterioscler Thromb Vasc Biol. 2011;31(6):1387–96. https://doi.org/10.1161/ATVBAHA.110.222547 . (PMID: 10.1161/ATVBAHA.110.222547214548103098301)
Xia X, Zhou C, He X, Liu C, Wang G, Sun X. The relationship between estrogen-induced phenotypic transformation and proliferation of vascular smooth muscle and hypertensive intracerebral hemorrhage. Ann Transl Med. 2020;8(12):762. https://doi.org/10.21037/atm-20-4567 . (PMID: 10.21037/atm-20-4567326476877333134)
Wang H, Liu Y, Zhu L, Wang W, Wan Z, Chen F, et al. 17beta-estradiol promotes cholesterol efflux from vascular smooth muscle cells through a liver X receptor alpha-dependent pathway. Int J Mol Med. 2014;33(3):550–8. https://doi.org/10.3892/ijmm.2014.1619 . (PMID: 10.3892/ijmm.2014.161924398697)
Peng YQ, Xiong D, Lin X, Cui RR, Xu F, Zhong JY, et al. Oestrogen inhibits arterial calcification by promoting Autophagy. Sci Rep. 2017;7(1):3549. https://doi.org/10.1038/s41598-017-03801-x . (PMID: 10.1038/s41598-017-03801-x286157275471178)
Montague CR, Hunter MG, Gavrilin MA, Phillips GS, Goldschmidt-Clermont PJ, Marsh CB. Activation of estrogen receptor-alpha reduces aortic smooth muscle differentiation. Circ Res. 2006;99(5):477–84. https://doi.org/10.1161/01.RES.0000238376.72592.a2 . (PMID: 10.1161/01.RES.0000238376.72592.a2168737151905928)
Huang F, Yin JG, Li KY, Li Y, Qi H, Fang L, et al. GPR30 decreases with vascular aging and promotes vascular smooth muscle cells maintaining differentiated phenotype and suppressing migration via activation of ERK1/2. Oncotargets Therapy. 2016;9:3415–22. https://doi.org/10.2147/Ott.S104972 . (PMID: 10.2147/Ott.S104972273548134907733)
Li HJ, Haque Z, Lu Q, Li L, Karas R, Mendelsohn M. Steroid receptor coactivator 3 is a coactivator for myocardin, the regulator of smooth muscle transcription and differentiation. Proc Natl Acad Sci U S A. 2007;104(10):4065–70. https://doi.org/10.1073/pnas.0611639104 . (PMID: 10.1073/pnas.0611639104173604781820709)
Liao XH, Li JY, Dong XM, Wang X, Xiang Y, Li H, et al. ERalpha inhibited myocardin-induced differentiation in uterine fibroids. Exp Cell Res. 2017;350(1):73–82. https://doi.org/10.1016/j.yexcr.2016.11.007 . (PMID: 10.1016/j.yexcr.2016.11.00727871850)
Wu Y, Shen Y, Kang K, Zhang Y, Ao F, Wan Y, et al. Effects of estrogen on growth and smooth muscle differentiation of vascular wall-resident CD34(+) stem/progenitor cells. Atherosclerosis. 2015;240(2):453–61. https://doi.org/10.1016/j.atherosclerosis.2015.04.008 . (PMID: 10.1016/j.atherosclerosis.2015.04.00825898000)
Kim JH, Choi YK, Do JY, Choi YK, Ha CM, Lee SJ, et al. Estrogen-related receptor gamma plays a key role in vascular calcification through the upregulation of BMP2 expression. Arterioscler Thromb Vasc Biol. 2015;35(11):2384–90. https://doi.org/10.1161/ATVBAHA.115.306102 . (PMID: 10.1161/ATVBAHA.115.30610226404484)
Zhou W, Liu W, Liao H, Cao Z, Xie H, Zhang S, et al. [Testosterone suppresses oxidized low-density lipoprotein-induced vascular smooth muscle cell phenotypic transition and proliferation]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2015;31(6):775–8. (PMID: 26062420)
Pang H, Xiao L, Lu Z, Chen H, Shang Z, Jiang N, et al. Targeting androgen receptor in macrophages inhibits phosphate-induced vascular smooth muscle cell calcification by decreasing IL-6 expression. Vascul Pharmacol. 2020;130:106681. https://doi.org/10.1016/j.vph.2020.106681 . (PMID: 10.1016/j.vph.2020.10668132387336)
Zhu D, Hadoke PW, Wu J, Vesey AT, Lerman DA, Dweck MR, et al. Ablation of the androgen receptor from vascular smooth muscle cells demonstrates a role for testosterone in vascular calcification. Sci Rep. 2016;6(1):24807. https://doi.org/10.1038/srep24807 . (PMID: 10.1038/srep24807270951214837411)
Pugliese G, Iacobini C, Blasetti Fantauzzi C, Menini S. The dark and bright side of atherosclerotic calcification. Atherosclerosis. 2015;238(2):220–30. https://doi.org/10.1016/j.atherosclerosis.2014.12.011 . (PMID: 10.1016/j.atherosclerosis.2014.12.01125528431)
Cutini PH, Massheimer VL. In vitro effects of progesterone and the synthetic progestin medroxyprogesterone acetate on vascular remodeling. Mol Cell Endocrinol. 2019;498:110543. https://doi.org/10.1016/j.mce.2019.110543 . (PMID: 10.1016/j.mce.2019.11054331421164)
Quinkler M, Kaur K, Hewison M, Stewart PM, Cooper MS. Progesterone is extensively metabolized in osteoblasts: implications for progesterone action on bone. Horm Metab Res. 2008;40(10):679–84. https://doi.org/10.1055/s-2008-1078718 . (PMID: 10.1055/s-2008-107871818537080)
Kolodgie FD, Jacob A, Wilson PS, Carlson GC, Farb A, Verma A, et al. Estradiol attenuates directed migration of vascular smooth muscle cells in vitro. Am J Pathol. 1996;148(3):969–76. (PMID: 87741511861726)
Bhalla RC, Toth KF, Bhatty RA, Thompson LP, Sharma RV. Estrogen reduces proliferation and agonist-induced calcium increase in coronary artery smooth muscle cells. Am J Physiol. 1997;272(4 Pt 2):H1996–2003. https://doi.org/10.1152/ajpheart.1997.272.4.H1996 . (PMID: 10.1152/ajpheart.1997.272.4.H19969139988)
Greig FH, Nixon GF. Phosphoprotein enriched in astrocytes (PEA)-15: a potential therapeutic target in multiple disease states. Pharmacol Ther. 2014;143(3):265–74. https://doi.org/10.1016/j.pharmthera.2014.03.006 . (PMID: 10.1016/j.pharmthera.2014.03.006246577084127788)
Meloche S, Pouyssegur J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene. 2007;26(22):3227–39. https://doi.org/10.1038/sj.onc.1210414 . (PMID: 10.1038/sj.onc.121041417496918)
Huang X, Jin Y, Zhou D, Xu G, Huang J, Shen L. IQGAP1 modulates the proliferation and migration of vascular smooth muscle cells in response to estrogen. Int J Mol Med. 2015;35(5):1460–6. https://doi.org/10.3892/ijmm.2015.2134 . (PMID: 10.3892/ijmm.2015.213425777140)
Ding Q, Gros R, Limbird LE, Chorazyczewski J, Feldman RD. Estradiol-mediated ERK phosphorylation and apoptosis in vascular smooth muscle cells requires GPR 30. Am J Physiol Cell Physiol. 2009;297(5):C1178–87. https://doi.org/10.1152/ajpcell.00185.2009 . (PMID: 10.1152/ajpcell.00185.200919741198)
Feldman RD, Gros R. Rapid vascular effects of steroids - a question of balance? Can J Cardiol. 2010;26(Suppl A):A22–6. https://doi.org/10.1016/s0828-282x(10)71057-6 . (PMID: 10.1016/s0828-282x(10)71057-6)
Schachter M. Vascular smooth muscle cell migration, atherosclerosis, and calcium channel blockers. Int J Cardiol. 1997;62(Suppl 2):S85–90. https://doi.org/10.1016/s0167-5273(97)00245-3 . (PMID: 10.1016/s0167-5273(97)00245-39488199)
Ortmann J, Veit M, Zingg S, Di Santo S, Traupe T, Yang Z, et al. Estrogen receptor-alpha but not -beta or GPER inhibits high glucose-induced human VSMC proliferation: potential role of ROS and ERK. J Clin Endocrinol Metab. 2011;96(1):220–8. https://doi.org/10.1210/jc.2010-0943 . (PMID: 10.1210/jc.2010-094320962025)
Cheng B, Song J, Zou Y, Wang Q, Lei Y, Zhu C, et al. Responses of vascular smooth muscle cells to estrogen are dependent on balance between ERK and p38 MAPK pathway activities. Int J Cardiol. 2009;134(3):356–65. https://doi.org/10.1016/j.ijcard.2008.02.017 . (PMID: 10.1016/j.ijcard.2008.02.01718584900)
Lees JA, Saito M, Vidal M, Valentine M, Look T, Harlow E, et al. The retinoblastoma protein binds to a family of E2F transcription factors. Mol Cell Biol. 1993;13(12):7813–25. https://doi.org/10.1128/mcb.13.12.7813-7825.1993 . (PMID: 10.1128/mcb.13.12.7813-7825.19938246996364853)
Takahashi K, Ohmichi M, Yoshida M, Hisamoto K, Mabuchi S, Arimoto-Ishida E, et al. Both estrogen and raloxifene cause G1 arrest of vascular smooth muscle cells. J Endocrinol. 2003;178(2):319–29. https://doi.org/10.1677/joe.0.1780319 . (PMID: 10.1677/joe.0.178031912904179)
Li Q, Zhu L, Zhang L, Chen H, Zhu Y, Du Y, et al. Inhibition of estrogen related receptor alpha attenuates vascular smooth muscle cell proliferation and migration by regulating RhoA/p27(Kip1) and beta-Catenin/Wnt4 signaling pathway. Eur J Pharmacol. 2017;799:188–95. https://doi.org/10.1016/j.ejphar.2017.02.020 . (PMID: 10.1016/j.ejphar.2017.02.02028213288)
Barchiesi F, Jackson EK, Fingerle J, Gillespie DG, Odermatt B, Dubey RK. 2-Methoxyestradiol, an estradiol metabolite, inhibits neointima formation and smooth muscle cell growth via double blockade of the cell cycle. Circ Res. 2006;99(3):266–74. https://doi.org/10.1161/01.RES.0000233318.85181.2e . (PMID: 10.1161/01.RES.0000233318.85181.2e16794187)
Chi C, Li DJ, Jiang YJ, Tong J, Fu H, Wu YH, et al. Vascular smooth muscle cell senescence and age-related diseases: state of the art. Biochim Biophys Acta Mol Basis Dis. 2019;1865(7):1810–21. https://doi.org/10.1016/j.bbadis.2018.08.015 . (PMID: 10.1016/j.bbadis.2018.08.01531109451)
Linton MF, Moslehi JJ, Babaev VR. Akt signaling in macrophage polarization, survival, and atherosclerosis. Int J Mol Sci. 2019;20(11):2703. https://doi.org/10.3390/ijms20112703 . (PMID: 10.3390/ijms20112703311594246600269)
Bonnet S, Paulin R, Sutendra G, Dromparis P, Roy M, Watson KO, et al. Dehydroepiandrosterone reverses systemic vascular remodeling through the inhibition of the Akt/GSK3-beta/NFAT axis. Circulation. 2009;120(13):1231–40. https://doi.org/10.1161/CIRCULATIONAHA.109.848911 . (PMID: 10.1161/CIRCULATIONAHA.109.84891119752325)
Chang C, Wang D, Xi L, Guo X, Wang G, Yu G. The orphan GPR50 receptor interacting with TbetaRI induces G1/S-phase cell cycle arrest via Smad3-p27/p21 in BRL-3A cells. Biochem Pharmacol. 2022;202:115117. https://doi.org/10.1016/j.bcp.2022.115117 . (PMID: 10.1016/j.bcp.2022.11511735671788)
Lee CH, Su SC, Chiang CF, Chien CY, Hsu CC, Yu TY, et al. Estrogen modulates vascular smooth muscle cell function through downregulation of SIRT1. Oncotarget. 2017;8(66):110039–51. https://doi.org/10.18632/oncotarget.22546 . (PMID: 10.18632/oncotarget.22546292991285746363)
Ueda K, Lu Q, Baur W, Aronovitz MJ, Karas RH. Rapid estrogen receptor signaling mediates estrogen-induced inhibition of vascular smooth muscle cell proliferation. Arterioscler Thromb Vasc Biol. 2013;33(8):1837–43. https://doi.org/10.1161/ATVBAHA.112.300752 . (PMID: 10.1161/ATVBAHA.112.300752237449914023354)
Son BK, Akishita M, Iijima K, Ogawa S, Maemura K, Yu J, et al. Androgen receptor-dependent transactivation of growth arrest-specific gene 6 mediates inhibitory effects of testosterone on vascular calcification. J Biol Chem. 2010;285(10):7537–44. https://doi.org/10.1074/jbc.M109.055087 . (PMID: 10.1074/jbc.M109.055087200481602844201)
Nanao-Hamai M, Son BK, Komuro A, Asari Y, Hashizume T, Takayama K et al. Ginsenoside Rb1 inhibits vascular calcification as a selective androgen receptor modulator. European Journal of Pharmacology. 2019;859:172546. doi: ARTN 172546. https://doi.org/10.1016/j.ejphar.2019.172546 .
Heo Y, Jeon H, Namkung W. PAR4-Mediated PI3K/Akt and RhoA/ROCK signaling pathways are essential for Thrombin-Induced morphological changes in MEG-01 cells. Int J Mol Sci. 2022;23(2):776. https://doi.org/10.3390/ijms23020776 . (PMID: 10.3390/ijms23020776350549668775998)
Gallou-Kabani C, Vige A, Gross MS, Junien C. Nutri-epigenomics: lifelong remodelling of our epigenomes by nutritional and metabolic factors and beyond. Clin Chem Lab Med. 2007;45(3):321–7. https://doi.org/10.1515/CCLM.2007.081 . (PMID: 10.1515/CCLM.2007.08117378726)
Kuhlmann JD, Rasch J, Wimberger P, Kasimir-Bauer S. microRNA and the pathogenesis of ovarian cancer–a new horizon for molecular diagnostics and treatment? Clin Chem Lab Med. 2012;50(4):601–15. https://doi.org/10.1515/cclm-2011-0847 . (PMID: 10.1515/cclm-2011-084722505556)
Lin HF, Hsi E, Liao YC, Chhor B, Hung J, Juo SH, et al. Demethylation of circulating estrogen receptor alpha gene in cerebral ischemic stroke. PLoS ONE. 2015;10(9):e0139608. https://doi.org/10.1371/journal.pone.0139608 . (PMID: 10.1371/journal.pone.0139608264226904589317)
Wong LM, Phoon LQ, Wei LK. Epigenetics modifications in large-artery atherosclerosis: a systematic review. J Stroke Cerebrovasc Dis. 2021;30(12):106033. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106033 . (PMID: 10.1016/j.jstrokecerebrovasdis.2021.10603334598837)
Molvarec A, Szeplaki G, Kovacs M, Szeplaki Z, Fazakas A, Prohaszka Z, et al. Estrogen receptor alpha (ESR1) PvuII and XbaI gene polymorphisms in ischemic stroke in a Hungarian population. Clin Chim Acta. 2007;382(1–2):100–5. https://doi.org/10.1016/j.cca.2007.04.003 . (PMID: 10.1016/j.cca.2007.04.00317493601)
Min J, Weitian Z, Peng C, Yan P, Bo Z, Yan W, et al. Correlation between insulin-induced estrogen receptor methylation and atherosclerosis. Cardiovasc Diabetol. 2016;15(1):156. https://doi.org/10.1186/s12933-016-0471-9 . (PMID: 10.1186/s12933-016-0471-9278327755105242)
Taheri M, Shoorei H, Dinger ME, Ghafouri-Fard S. Perspectives on the role of non-coding RNAs in the regulation of expression and function of the estrogen receptor. Cancers (Basel). 2020;12(8):2162. https://doi.org/10.3390/cancers12082162 . (PMID: 10.3390/cancers1208216232759784)
Horton AC, Wilkinson MM, Kilanowski-Doroh I, Ogola BO, Lindsey SH. Dihydrotestosterone induces arterial stiffening in female mice. Res Sq. 2023;15(1):9. https://doi.org/10.21203/rs.3.rs-2522089/v1 . (PMID: 10.21203/rs.3.rs-2522089/v1)
Harvey A, Montezano AC, Touyz RM. Vascular biology of ageing-implications in hypertension. J Mol Cell Cardiol. 2015;83:112–21. https://doi.org/10.1016/j.yjmcc.2015.04.011 . (PMID: 10.1016/j.yjmcc.2015.04.011258963914534766)
Sasaki Y, Ikeda Y, Uchikado Y, Akasaki Y, Sadoshima J, Ohishi M. Estrogen plays a crucial role in Rab9-Dependent mitochondrial autophagy, delaying arterial senescence. J Am Heart Assoc. 2021;10(7):e019310. https://doi.org/10.1161/JAHA.120.019310 . (PMID: 10.1161/JAHA.120.019310337195028174372)
Arnal JF, Fontaine C, Billon-Gales A, Favre J, Laurell H, Lenfant F, et al. Estrogen receptors and endothelium. Arterioscler Thromb Vasc Biol. 2010;30(8):1506–12. https://doi.org/10.1161/ATVBAHA.109.191221 . (PMID: 10.1161/ATVBAHA.109.19122120631350)
Smirnova NF, Fontaine C, Buscato M, Lupieri A, Vinel A, Valera MC, et al. The activation Function-1 of estrogen receptor alpha prevents arterial Neointima Development through a direct effect on smooth muscle cells. Circul Res. 2015;117(9):770–8. https://doi.org/10.1161/Circresaha.115.306416 . (PMID: 10.1161/Circresaha.115.306416)
Novensa L, Novella S, Medina P, Segarra G, Castillo N, Heras M, et al. Aging negatively affects estrogens-mediated effects on nitric oxide bioavailability by shifting ERalpha/ERbeta balance in female mice. PLoS ONE. 2011;6(9):e25335. https://doi.org/10.1371/journal.pone.0025335 . (PMID: 10.1371/journal.pone.0025335219665013178641)
Bowling MR, Xing D, Kapadia A, Chen YF, Szalai AJ, Oparil S, et al. Estrogen effects on vascular inflammation are age dependent: role of estrogen receptors. Arterioscler Thromb Vasc Biol. 2014;34(7):1477–85. https://doi.org/10.1161/ATVBAHA.114.303629 . (PMID: 10.1161/ATVBAHA.114.303629248763524227403)
Chen YQ, Zhao J, Jin CW, Li YH, Tang MX, Wang ZH, et al. Testosterone delays vascular smooth muscle cell senescence and inhibits collagen synthesis via the Gas6/Axl signaling pathway. Age (Dordr). 2016;38(3):60. https://doi.org/10.1007/s11357-016-9910-5 . (PMID: 10.1007/s11357-016-9910-527206970)
Yildiz O, Seyrek M, Gul H, Un I, Yildirim V, Ozal E, et al. Testosterone relaxes human internal mammary artery in vitro. J Cardiovasc Pharmacol. 2005;45(6):580–5. https://doi.org/10.1097/01.fjc.0000161400.06704.1e . (PMID: 10.1097/01.fjc.0000161400.06704.1e15897786)
Zhou P, Fu L, Pan Z, Ma D, Zhang Y, Qu F, et al. Testosterone deprivation by castration impairs expression of voltage-dependent potassium channels in rat aorta. Eur J Pharmacol. 2008;593(1–3):87–91. https://doi.org/10.1016/j.ejphar.2008.07.014 . (PMID: 10.1016/j.ejphar.2008.07.01418662681)
Chignalia AZ, Schuldt EZ, Camargo LL, Montezano AC, Callera GE, Laurindo FR, et al. Testosterone induces vascular smooth muscle cell migration by NADPH oxidase and c-Src-dependent pathways. Hypertension. 2012;59(6):1263–71. https://doi.org/10.1161/HYPERTENSIONAHA.111.180620 . (PMID: 10.1161/HYPERTENSIONAHA.111.18062022566500)
English KM, Jones RD, Jones TH, Morice AH, Channer KS. Aging reduces the responsiveness of coronary arteries from male Wistar rats to the vasodilatory action of testosterone. Clin Sci (Lond). 2000;99(1):77–82. (PMID: 10.1042/cs099007710887060)
Lopes RA, Neves KB, Carneiro FS, Tostes RC. Testosterone and vascular function in aging. Front Physiol. 2012;3:89. https://doi.org/10.3389/fphys.2012.00089 . (PMID: 10.3389/fphys.2012.00089225145413322529)
Bostrom KI. Where do we stand on vascular calcification? Vascul Pharmacol. 2016;84:8–14. https://doi.org/10.1016/j.vph.2016.05.014 . (PMID: 10.1016/j.vph.2016.05.014272609395097669)
Steitz SA, Speer MY, Curinga G, Yang HY, Haynes P, Aebersold R, et al. Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res. 2001;89(12):1147–54. https://doi.org/10.1161/hh2401.101070 . (PMID: 10.1161/hh2401.10107011739279)
Speer MY, Yang HY, Brabb T, Leaf E, Look A, Lin WL, et al. Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res. 2009;104(6):733–41. https://doi.org/10.1161/CIRCRESAHA.108.183053 . (PMID: 10.1161/CIRCRESAHA.108.183053191970752716055)
Wu X, Zhao Q, Chen Z, Geng YJ, Zhang W, Zhou Q, et al. Estrogen inhibits vascular calcification in rats via hypoxia-induced factor-1alpha signaling. Vascular. 2020;28(4):465–74. https://doi.org/10.1177/1708538120904297 . (PMID: 10.1177/1708538120904297320891097391482)
Tharp DL, Ivey JR, Shaw RL, Bowles DK. Ovariectomy increases L-type ca(2+) channel activity in porcine coronary smooth muscle. Menopause. 2014;21(6):661–8. https://doi.org/10.1097/GME.0000000000000087 . (PMID: 10.1097/GME.000000000000008724848355)
Pang Y, Thomas P. Role of mPRalpha (PAQR7) in progesterone-induced Ca2 + decrease in human vascular smooth muscle cells. J Mol Endocrinol. 2019;63(3):199–213. https://doi.org/10.1530/JME-19-0019 . (PMID: 10.1530/JME-19-001931416049)
Hu Z, Ma R, Gong J. Investigation of testosterone-mediated non-transcriptional inhibition of ca(2+) in vascular smooth muscle cells. Biomed Rep. 2016;4(2):197–202. https://doi.org/10.3892/br.2015.557 . (PMID: 10.3892/br.2015.55726893838)
Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. N Engl J Med. 1999;340(23):1801–11. https://doi.org/10.1056/NEJM199906103402306 . (PMID: 10.1056/NEJM19990610340230610362825)
Barton M. Cholesterol and atherosclerosis: modulation by oestrogen. Curr Opin Lipidol. 2013;24(3):214–20. https://doi.org/10.1097/MOL.0b013e3283613a94 . (PMID: 10.1097/MOL.0b013e3283613a9423594711)
Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women’s Health Initiative randomized controlled trial. JAMA. 2002;288(3):321–33. https://doi.org/10.1001/jama.288.3.321 . (PMID: 10.1001/jama.288.3.32112117397)
Bruck B, Brehme U, Gugel N, Hanke S, Finking G, Lutz C, et al. Gender-specific differences in the effects of testosterone and estrogen on the development of atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol. 1997;17(10):2192–9. https://doi.org/10.1161/01.atv.17.10.2192 . (PMID: 10.1161/01.atv.17.10.21929351389)
Njoroge JN, Tressel W, Biggs ML, Matsumoto AM, Smith NL, Rosenberg E, et al. Circulating androgen concentrations and risk of Incident Heart failure in older men: the Cardiovascular Health Study. J Am Heart Assoc. 2022;11(21):e026953. https://doi.org/10.1161/JAHA.122.026953 . (PMID: 10.1161/JAHA.122.026953362857839673636)
Chaikof EL, Dalman RL, Eskandari MK, Jackson BM, Lee WA, Mansour MA, et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J Vasc Surg. 2018;67(1):2–e772. https://doi.org/10.1016/j.jvs.2017.10.044 . (PMID: 10.1016/j.jvs.2017.10.04429268916)
Gravitte A, Archibald T, Cobble A, Kennard B, Brown S. Liquid chromatography-mass spectrometry applications for quantification of endogenous sex hormones. Biomed Chromatogr. 2021;35(1):e5036. https://doi.org/10.1002/bmc.5036 . (PMID: 10.1002/bmc.503633226656)
Wu XF, Zhang J, Paskauskas S, Xin SJ, Duan ZQ. The role of estrogen in the formation of experimental abdominal aortic aneurysm. Am J Surg. 2009;197(1):49–54. https://doi.org/10.1016/j.amjsurg.2007.11.022 . (PMID: 10.1016/j.amjsurg.2007.11.02218585678)
Chen S, Zhao Y, Jin H, Qi X, He J, Huang J, et al. TROVE2 strengthens the anti-inflammatory effect via macrophage polarization by estrogen induction in abdominal aortic aneurysm. Life Sci. 2020;242:117207. https://doi.org/10.1016/j.lfs.2019.117207 . (PMID: 10.1016/j.lfs.2019.11720731863777)
Gavish L, Gilon D, Beeri R, Zuckerman A, Nachman D, Gertz SD. Photobiomodulation and estrogen stabilize mitochondrial membrane potential in angiotensin-II challenged porcine aortic smooth muscle cells. J Biophotonics. 2021;14(1):e202000329. https://doi.org/10.1002/jbio.202000329 . (PMID: 10.1002/jbio.20200032932888351)
Martin-McNulty B, Tham DM, da Cunha V, Ho JJ, Wilson DW, Rutledge JC, et al. 17 Beta-estradiol attenuates development of angiotensin II-induced aortic abdominal aneurysm in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2003;23(9):1627–32. https://doi.org/10.1161/01.ATV.0000085842.20866.6A . (PMID: 10.1161/01.ATV.0000085842.20866.6A12855485)
Woodrum DT, Ford JW, Cho BS, Hannawa KK, Stanley JC, Henke PK, et al. Differential effect of 17-beta-estradiol on smooth muscle cell and aortic explant MMP2. J Surg Res. 2009;155(1):48–53. https://doi.org/10.1016/j.jss.2008.07.003 . (PMID: 10.1016/j.jss.2008.07.00319041098)
Petsophonsakul P, Furmanik M, Forsythe R, Dweck M, Schurink GW, Natour E, et al. Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation. Arterioscler Thromb Vasc Biol. 2019;39(7):1351–68. https://doi.org/10.1161/ATVBAHA.119.312787 . (PMID: 10.1161/ATVBAHA.119.31278731144989)
Villard C, Swedenborg J, Eriksson P, Hultgren R. Reproductive history in women with abdominal aortic aneurysms. J Vasc Surg. 2011;54(2):341–5. https://doi.org/10.1016/j.jvs.2010.12.069 . 5 e1-2. (PMID: 10.1016/j.jvs.2010.12.06921620618)
Burger HG, Dudley EC, Hopper JL, Groome N, Guthrie JR, Green A, et al. Prospectively measured levels of serum follicle-stimulating hormone, estradiol, and the dimeric inhibins during the menopausal transition in a population-based cohort of women. J Clin Endocrinol Metab. 1999;84(11):4025–30. https://doi.org/10.1210/jcem.84.11.6158 . (PMID: 10.1210/jcem.84.11.615810566644)
Hall JE. Endocrinology of the menopause. Endocrinol Metab Clin North Am. 2015;44(3):485–96. https://doi.org/10.1016/j.ecl.2015.05.010 . (PMID: 10.1016/j.ecl.2015.05.010263162386983294)
Tedjawirja VN, Nieuwdorp M, Yeung KK, Balm R, de Waard VA, Novel Hypothesis. A role for follicle stimulating hormone in abdominal aortic Aneurysm Development in Postmenopausal Women. Front Endocrinol (Lausanne). 2021;12:726107. https://doi.org/10.3389/fendo.2021.726107 . (PMID: 10.3389/fendo.2021.72610734721292)
Henriques T, Zhang X, Yiannikouris FB, Daugherty A, Cassis LA. Androgen increases AT1a receptor expression in abdominal aortas to promote angiotensin II-induced AAAs in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2008;28(7):1251–6. https://doi.org/10.1161/ATVBAHA.107.160382 . (PMID: 10.1161/ATVBAHA.107.160382184513292757112)
Zhang X, Thatcher S, Wu C, Daugherty A, Cassis LA. Castration of male mice prevents the progression of established angiotensin II-induced abdominal aortic aneurysms. J Vasc Surg. 2015;61(3):767–76. https://doi.org/10.1016/j.jvs.2013.11.004 . (PMID: 10.1016/j.jvs.2013.11.00424439319)
Mukherjee K, Pingili AK, Singh P, Dhodi AN, Dutta SR, Gonzalez FJ, et al. Testosterone metabolite 6beta-Hydroxytestosterone contributes to Angiotensin II-Induced Abdominal aortic aneurysms in Apoe(-/-) male mice. J Am Heart Assoc. 2021;10(7):e018536. https://doi.org/10.1161/JAHA.120.018536 . (PMID: 10.1161/JAHA.120.018536337195008174379)
Davis JP, Salmon M, Pope NH, Lu G, Su G, Meher A et al. Pharmacologic blockade and genetic deletion of androgen receptor attenuates aortic aneurysm formation. J Vasc Surg. 2016;63(6):1602-12 e2. https://doi.org/10.1016/j.jvs.2015.11.038.
Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest. 2008;118(7):2372–9. https://doi.org/10.1172/JCI33452 . (PMID: 10.1172/JCI33452185969052439479)
Sheikh AQ, Lighthouse JK, Greif DM. Recapitulation of developing artery muscularization in pulmonary hypertension. Cell Rep. 2014;6(5):809–17. https://doi.org/10.1016/j.celrep.2014.01.042 . (PMID: 10.1016/j.celrep.2014.01.042245829634015349)
Sheikh AQ, Misra A, Rosas IO, Adams RH, Greif DM. Smooth muscle cell progenitors are primed to muscularize in pulmonary hypertension. Sci Transl Med. 2015;7(308):308ra159. https://doi.org/10.1126/scitranslmed.aaa9712 . (PMID: 10.1126/scitranslmed.aaa9712264469564629985)
Sheikh AQ, Saddouk FZ, Ntokou A, Mazurek R, Greif DM. Cell Autonomous and Non-cell Autonomous Regulation of SMC progenitors in Pulmonary Hypertension. Cell Rep. 2018;23(4):1152–65. https://doi.org/10.1016/j.celrep.2018.03.043 . (PMID: 10.1016/j.celrep.2018.03.043296948925959296)
Ntokou A, Dave JM, Kauffman AC, Sauler M, Ryu C, Hwa J, et al. Macrophage-derived PDGF-B induces muscularization in murine and human pulmonary hypertension. JCI Insight. 2021;6(6):e139067. https://doi.org/10.1172/jci.insight.139067 . (PMID: 10.1172/jci.insight.139067335919588026182)
Morris H, Denver N, Gaw R, Labazi H, Mair K, MacLean MR. Sex differences in Pulmonary Hypertension. Clin Chest Med. 2021;42(1):217–28. https://doi.org/10.1016/j.ccm.2020.10.005 . (PMID: 10.1016/j.ccm.2020.10.00533541615)
Austin ED, Hamid R, Hemnes AR, Loyd JE, Blackwell T, Yu C, et al. BMPR2 expression is suppressed by signaling through the estrogen receptor. Biol Sex Differ. 2012;3(1):6. https://doi.org/10.1186/2042-6410-3-6 . (PMID: 10.1186/2042-6410-3-6223484103310853)
Morrell NW, Yang X, Upton PD, Jourdan KB, Morgan N, Sheares KK, et al. Altered growth responses of pulmonary artery smooth muscle cells from patients with primary pulmonary hypertension to transforming growth factor-beta(1) and bone morphogenetic proteins. Circulation. 2001;104(7):790–5. https://doi.org/10.1161/hc3201.094152 . (PMID: 10.1161/hc3201.09415211502704)
Yu PB, Deng DY, Beppu H, Hong CC, Lai C, Hoyng SA, et al. Bone morphogenetic protein (BMP) type II receptor is required for BMP-mediated growth arrest and differentiation in pulmonary artery smooth muscle cells. J Biol Chem. 2008;283(7):3877–88. https://doi.org/10.1074/jbc.M706797200 . (PMID: 10.1074/jbc.M70679720018042551)
Mair KM, Yang XD, Long L, White K, Wallace E, Ewart MA, et al. Sex affects bone morphogenetic protein type II receptor signaling in pulmonary artery smooth muscle cells. Am J Respir Crit Care Med. 2015;191(6):693–703. https://doi.org/10.1164/rccm.201410-1802OC . (PMID: 10.1164/rccm.201410-1802OC256081114384779)
Frump AL, Albrecht M, Yakubov B, Breuils-Bonnet S, Nadeau V, Tremblay E, et al. 17beta-Estradiol and estrogen receptor alpha protect right ventricular function in pulmonary hypertension via BMPR2 and apelin. J Clin Invest. 2021;131(6):e129433. https://doi.org/10.1172/JCI129433 . (PMID: 10.1172/JCI129433334973597968046)
Docherty CK, Harvey KY, Mair KM, Griffin S, Denver N, MacLean MR. The role of sex in the pathophysiology of Pulmonary Hypertension. Sex-specific analysis of Cardiovascular function. Adv Exp Med Biol, 2018. pp. 511–28.
Sun Y, Sangam S, Guo Q, Wang J, Tang H, Black SM, et al. Sex differences, Estrogen Metabolism and Signaling in the development of pulmonary arterial hypertension. Front Cardiovasc Med. 2021;8:719058. https://doi.org/10.3389/fcvm.2021.719058 . (PMID: 10.3389/fcvm.2021.719058345684608460911)
Fessel JP, Chen X, Frump A, Gladson S, Blackwell T, Kang C, et al. Interaction between bone morphogenetic protein receptor type 2 and estrogenic compounds in pulmonary arterial hypertension. Pulm Circ. 2013;3(3):564–77. https://doi.org/10.1086/674312 . (PMID: 10.1086/674312246185414070799)
Austin ED, Cogan JD, West JD, Hedges LK, Hamid R, Dawson EP, et al. Alterations in oestrogen metabolism: implications for higher penetrance of familial pulmonary arterial hypertension in females. Eur Respir J. 2009;34(5):1093–9. https://doi.org/10.1183/09031936.00010409 . (PMID: 10.1183/09031936.00010409193571543742124)
White K, Johansen AK, Nilsen M, Ciuclan L, Wallace E, Paton L, et al. Activity of the estrogen-metabolizing enzyme cytochrome P450 1B1 influences the development of pulmonary arterial hypertension. Circulation. 2012;126(9):1087–98. https://doi.org/10.1161/CIRCULATIONAHA.111.062927 . (PMID: 10.1161/CIRCULATIONAHA.111.06292722859684)
Hood KY, Montezano AC, Harvey AP, Nilsen M, MacLean MR, Touyz RM. Nicotinamide Adenine Dinucleotide Phosphate Oxidase-Mediated Redox Signaling and vascular remodeling by 16alpha-Hydroxyestrone in human pulmonary artery cells: implications in pulmonary arterial hypertension. Hypertension. 2016;68(3):796–808. https://doi.org/10.1161/HYPERTENSIONAHA.116.07668 . (PMID: 10.1161/HYPERTENSIONAHA.116.0766827402919)
Ogola B, Zhang Y, Iyer L, Thekkumkara T. 2-Methoxyestradiol causes matrix metalloproteinase 9-mediated transactivation of epidermal growth factor receptor and angiotensin type 1 receptor downregulation in rat aortic smooth muscle cells. Am J Physiol Cell Physiol. 2018;314(5):C554–68. https://doi.org/10.1152/ajpcell.00152.2017 . (PMID: 10.1152/ajpcell.00152.201729365274)
Koganti S, Snyder R, Gumaste U, Karamyan VT, Thekkumkara T. 2-Methoxyestradiol binding of GPR30 down-regulates angiotensin AT receptor. Eur J Pharmacol. 2014;723:131–40. https://doi.org/10.1016/j.ejphar.2013.10.064 . (PMID: 10.1016/j.ejphar.2013.10.06424262995)
de la Dumas E, Savineau JP, Bonnet S, Dehydroepiandrosterone. A new treatment for vascular remodeling diseases including pulmonary arterial hypertension. Pharmacol Ther. 2010;126(2):186–99. https://doi.org/10.1016/j.pharmthera.2010.02.003 . (PMID: 10.1016/j.pharmthera.2010.02.003)
Dessouroux A, Akwa Y, Baulieu EE. DHEA decreases HIF-1alpha accumulation under hypoxia in human pulmonary artery cells: potential role in the treatment of pulmonary arterial hypertension. J Steroid Biochem Mol Biol. 2008;109(1–2):81–9. https://doi.org/10.1016/j.jsbmb.2007.12.001 . (PMID: 10.1016/j.jsbmb.2007.12.00118261897)
Paulin R, Meloche J, Jacob MH, Bisserier M, Courboulin A, Bonnet S. Dehydroepiandrosterone inhibits the Src/STAT3 constitutive activation in pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2011;301(5):H1798–809. https://doi.org/10.1152/ajpheart.00654.2011 . (PMID: 10.1152/ajpheart.00654.201121890685)
Riches K, Alshanwani AR, Warburton P, O’Regan DJ, Ball SG, Wood IC, et al. Elevated expression levels of miR-143/5 in saphenous vein smooth muscle cells from patients with type 2 diabetes drive persistent changes in phenotype and function. J Mol Cell Cardiol. 2014;74(100):240–50. https://doi.org/10.1016/j.yjmcc.2014.05.018 . (PMID: 10.1016/j.yjmcc.2014.05.018249278764121534)
Yuan Y, Liao L, Tulis DA, Xu J. Steroid receptor coactivator-3 is required for inhibition of neointima formation by estrogen. Circulation. 2002;105(22):2653–9. https://doi.org/10.1161/01.cir.0000018947.95555.65 . (PMID: 10.1161/01.cir.0000018947.95555.6512045172)
Zhang C, Li H, Guo X. FOXC2-AS1 regulates phenotypic transition, proliferation and migration of human great saphenous vein smooth muscle cells. Biol Res. 2019;52(1):59. https://doi.org/10.1186/s40659-019-0266-z . (PMID: 10.1186/s40659-019-0266-z318016296894326)
Kikuchi S, Chen L, Xiong K, Saito Y, Azuma N, Tang G, et al. Smooth muscle cells of human veins show an increased response to injury at valve sites. J Vasc Surg. 2018;67(5):1556–e709. https://doi.org/10.1016/j.jvs.2017.03.447 . (PMID: 10.1016/j.jvs.2017.03.44728647196)
Yin M, Tian S, Huang X, Huang Y, Jiang M. Role and mechanism of tissue plasminogen activator in venous wall fibrosis remodeling after deep venous thrombosis via the glycogen synthase kinase-3 beta signaling pathway. J Surg Res. 2013;184(2):1182–95. https://doi.org/10.1016/j.jss.2013.03.100 . (PMID: 10.1016/j.jss.2013.03.10023632004)
Okoth K, Chandan JS, Marshall T, Thangaratinam S, Thomas GN, Nirantharakumar K, et al. Association between the reproductive health of young women and cardiovascular disease in later life: umbrella review. BMJ. 2020;371:m3502. https://doi.org/10.1136/bmj.m3502 . (PMID: 10.1136/bmj.m3502330286067537472)
معلومات مُعتمدة: U23A20398, 82030007 National Natural Science Foundation of China; 82301845 National Natural Science Foundation of China; 2023M732929 China Postdoctoral Science Foundation
فهرسة مساهمة: Keywords: Diseases; Phenotypic switching; Sex hormones; Vascular smooth muscle cells
المشرفين على المادة: 0 (Gonadal Steroid Hormones)
تواريخ الأحداث: Date Created: 20240903 Date Completed: 20240904 Latest Revision: 20240903
رمز التحديث: 20240904
DOI: 10.1186/s40659-024-00542-w
PMID: 39227995
قاعدة البيانات: MEDLINE
الوصف
تدمد:0717-6287
DOI:10.1186/s40659-024-00542-w