دورية أكاديمية

Rising Alkali-to-Acid Ratios in the Atmosphere May Correspond to Increased Aerosol Acidity.

التفاصيل البيبلوغرافية
العنوان: Rising Alkali-to-Acid Ratios in the Atmosphere May Correspond to Increased Aerosol Acidity.
المؤلفون: Zheng G; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China., Su H; Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China., Wan R; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China., Duan X; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China., Cheng Y; Aerosol Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany.
المصدر: Environmental science & technology [Environ Sci Technol] 2024 Sep 17; Vol. 58 (37), pp. 16517-16524. Date of Electronic Publication: 2024 Sep 04.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Chemical Society Country of Publication: United States NLM ID: 0213155 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1520-5851 (Electronic) Linking ISSN: 0013936X NLM ISO Abbreviation: Environ Sci Technol Subsets: MEDLINE
أسماء مطبوعة: Publication: Washington DC : American Chemical Society
Original Publication: Easton, Pa. : American Chemical Society, c1967-
مواضيع طبية MeSH: Aerosols* , Atmosphere*/chemistry, Hydrogen-Ion Concentration ; Alkalies/chemistry ; Acids/chemistry ; Air Pollutants/analysis
مستخلص: Aerosol acidity (or pH) is one central parameter in determining the health, climate, and ecological effects of aerosols. While it is traditionally assumed that the long-term aerosol pH levels are determined by the relative abundances of atmospheric alkaline to acidic substances (referred to as R C/A hereinafter), we observed contrasting pH─ R C/A trends at different sites globally, i.e., rising alkali-to-acid ratios in the atmosphere may unexpectedly lead to increased aerosol acidity. Here, we examined this apparently counterintuitive phenomenon using the multiphase buffer theory. We show that the aerosol water content (AWC) set a pH "baseline" as the peak buffer pH, while the R C/A and particle-phase chemical compositions determine the deviation of pH from this baseline within the buffer ranges. Therefore, contrasting long-term pH trends may emerge when R C/A increases while the AWC or nitrate fraction decreases, or vice versa. Our results provided a theoretical framework for a quantitative understanding of the response of aerosol pH to variations in SO 2 , NO x versus NH 3 , and dust emissions, offering broad applications in studies on aerosol pH and the associated environmental and health effects.
فهرسة مساهمة: Keywords: aerosol acidity; buffering effect; emission intensities; long-term trends; neutralization degree
المشرفين على المادة: 0 (Aerosols)
0 (Alkalies)
0 (Acids)
0 (Air Pollutants)
تواريخ الأحداث: Date Created: 20240904 Date Completed: 20240917 Latest Revision: 20240917
رمز التحديث: 20240917
DOI: 10.1021/acs.est.4c06860
PMID: 39231580
قاعدة البيانات: MEDLINE
الوصف
تدمد:1520-5851
DOI:10.1021/acs.est.4c06860