دورية أكاديمية

G-Protein-Coupled Receptor Kinase 2 Inhibition Induces Meiotic Arrest by Disturbing Ca 2+ Release in Porcine Oocytes.

التفاصيل البيبلوغرافية
العنوان: G-Protein-Coupled Receptor Kinase 2 Inhibition Induces Meiotic Arrest by Disturbing Ca 2+ Release in Porcine Oocytes.
المؤلفون: Kim JD; Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, South Korea., Lee SH; Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, South Korea., Li XH; Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, South Korea., Lu QY; Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, South Korea., Zhan CL; Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, South Korea., Lee GH; Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, South Korea., Sim JM; Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, South Korea., Song HJ; Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, South Korea., Zhou D; Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, South Korea., Cui XS; Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, South Korea.
المصدر: Reproduction in domestic animals = Zuchthygiene [Reprod Domest Anim] 2024 Sep; Vol. 59 (9), pp. e14715.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Paul Parey Scientific Publishers Country of Publication: Germany NLM ID: 9015668 Publication Model: Print Cited Medium: Internet ISSN: 1439-0531 (Electronic) Linking ISSN: 09366768 NLM ISO Abbreviation: Reprod Domest Anim Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; Hamburg : Paul Parey Scientific Publishers, c1990-
مواضيع طبية MeSH: Oocytes*/drug effects , Meiosis*/drug effects , G-Protein-Coupled Receptor Kinase 2*/metabolism , Calcium*/metabolism, Animals ; Female ; Swine ; Maturation-Promoting Factor/metabolism ; In Vitro Oocyte Maturation Techniques/veterinary
مستخلص: G-protein-coupled receptor kinase 2 (GRK2) interacts with Gβγ and Gαq, subunits of G-protein alpha, to regulate cell signalling. The second messenger inositol trisphosphate, produced by activated Gαq, promotes calcium release from the endoplasmic reticulum (ER) and regulates maturation-promoting factor (MPF) activity. This study aimed to investigate the role of GRK2 in MPF activity during the meiotic maturation of porcine oocytes. A specific inhibitor of GRK2 (βi) was used in this study. The present study showed that GRK2 inhibition increased the percentage of oocyte arrest at the metaphase I (MI) stage (control: 13.84 ± 0.95%; βi: 31.30 ± 4.18%), which resulted in the reduction of the maturation rate (control: 80.36 ± 1.94%; βi: 65.40 ± 1.14%). The level of phospho-GRK2 decreased in the treated group, suggesting that GRK2 activity was reduced upon GRK2 inhibition. Furthermore, the addition of βi decreased Ca 2+ release from the ER. The protein levels of cyclin B and cyclin-dependent kinase 1 were higher in the treatment group than those in the control group, indicating that GRK2 inhibition prevented a decrease in MPF activity. Collectively, GRK2 inhibition induced meiotic arrest at the MI stage in porcine oocytes by preventing a decrease in MPF activity, suggesting that GRK2 is essential for oocyte meiotic maturation in pigs.
(© 2024 Wiley‐VCH GmbH. Published by John Wiley & Sons Ltd.)
References: Beebe, L. F. S., S. J. McIlfatrick, and M. B. Nottle. 2009. “Cytochalasin B and Trichostatin A Treatment Postactivation Improves In Vitro Development of Porcine Somatic Cell Nuclear Transfer Embryos.” Cloning and Stem Cells 11, no. 4: 477–482. https://doi.org/10.1089/clo.2009.0029.
Brevini, T. A. L., F. Cillo, S. Antonini, and F. Gandolfi. 2007. “Cytoplasmic Remodelling and the Acquisition of Developmental Competence in Pig Oocytes.” Animal Reproduction Science 98, no. 1: 23–38. https://doi.org/10.1016/j.anireprosci.2006.10.018.
Dong, Q., A. Shenker, J. Way, et al. 1995. “Molecular Cloning of Human G Alpha q cDNA and Chromosomal Localization of the G Alpha q Gene (GNAQ) and a Processed Pseudogene.” Genomics 30, no. 3: 470–475. https://doi.org/10.1006/geno.1995.1267.
Duan, J., H. Liu, F. Zhao, et al. 2023. “GPCR Activation and GRK2 Assembly by a Biased Intracellular Agonist.” Nature 620, no. 7974: 676–681. https://doi.org/10.1038/s41586‐023‐06395‐9.
Fan, H.‐Y., and Q.‐Y. Sun. 2019. “Chapter 12—Oocyte Meiotic Maturation.” In The Ovary, edited by P. C. K. Leung and E. Y. Adashi, 3rd ed., 181–203. Cambridge, MA: Academic Press. https://doi.org/10.1016/B978‐0‐12‐813209‐8.00012‐1.
Ge, Y., J.‐J. Deng, J. Zhu, et al. 2022. “Discovery of Small Molecule Gαq/11 Protein Inhibitors Against Uveal Melanoma.” Acta Pharmaceutica Sinica B 12, no. 8: 3326–3340. https://doi.org/10.1016/j.apsb.2022.04.016.
Gorczyca, G., K. Wartalski, M. Romek, M. Samiec, and M. Duda. 2022. “The Molecular Quality and Mitochondrial Activity of Porcine Cumulus–Oocyte Complexes Are Affected by Their Exposure to Three Endocrine‐Active Compounds Under 3D In Vitro Maturation Conditions.” International Journal of Molecular Sciences 23, no. 9: 4572.
Gorczyca, G., K. Wartalski, J. Wiater, M. Samiec, Z. Tabarowski, and M. Duda. 2021. “Anabolic Steroids‐Driven Regulation of Porcine Ovarian Putative Stem Cells Favors the Onset of Their Neoplastic Transformation.” International Journal of Molecular Sciences 22, no. 21: 11800. https://doi.org/10.3390/ijms222111800.
Grupen, C. G., and D. T. Armstrong. 2010. “Relationship Between Cumulus Cell Apoptosis, Progesterone Production and Porcine Oocyte Developmental Competence: Temporal Effects of Follicular Fluid During IVM.” Reproduction, Fertility and Development 22, no. 7: 1100–1109. https://doi.org/10.1071/RD09307.
He, M., T. Zhang, Y. Yang, and C. Wang. 2021. “Mechanisms of Oocyte Maturation and Related Epigenetic Regulation.” Frontiers in Cell and Developmental Biology 9: 654028. https://doi.org/10.3389/fcell.2021.654028.
Heo, G., M. H. Sun, W. J. Jiang, et al. 2022. “Rotenone Causes Mitochondrial Dysfunction and Prevents Maturation in Porcine Oocytes.” PLoS One 17, no. 11: e0277477. https://doi.org/10.1371/journal.pone.0277477.
Inoue, D., M. Ohe, Y. Kanemori, T. Nobui, and N. Sagata. 2007. “A Direct Link of the Mos–MAPK Pathway to Erp1/Emi2 in Meiotic Arrest of Xenopus Laevis Eggs.” Nature 446, no. 7139: 1100–1104. https://doi.org/10.1038/nature05688.
Jin, Y.‐X., X.‐S. Cui, Y.‐J. Han, and N.‐H. Kim. 2009. “Leptin Accelerates Pronuclear Formation Following Intracytoplasmic Sperm Injection of Porcine Oocytes: Possible Role for MAP Kinase Inactivation.” Animal Reproduction Science 115, no. 1: 137–148. https://doi.org/10.1016/j.anireprosci.2008.10.021.
Karls, A., and M. Mynlieff. 2015. “GABA(B) Receptors Couple to Gαq to Mediate Increases in Voltage‐Dependent Calcium Current During Development.” Journal of Neurochemistry 135, no. 1: 88–100. https://doi.org/10.1111/jnc.13259.
Liu, C., Y. Liu, K. Larsen, Y. P. Hou, and H. Callesen. 2018. “Calcium‐Sensing Receptor (CASR) Is Involved in Porcine In Vitro Fertilisation and Early Embryo Development.” Reproduction, Fertility and Development 30, no. 2: 391–398. https://doi.org/10.1071/RD16338.
Liu, Y., X. Li, Y. He, et al. 2020. “ASB7 Is a Novel Regulator of Cytoskeletal Organization During Oocyte Maturation.” Frontiers in Cell and Developmental Biology 8: 595917. https://doi.org/10.3389/fcell.2020.595917.
Marangos, P., M. Stevense, K. Niaka, et al. 2015. “DNA Damage‐Induced Metaphase I Arrest Is Mediated by the Spindle Assembly Checkpoint and Maternal Age.” Nature Communications 6, no. 1: 8706. https://doi.org/10.1038/ncomms9706.
Meng, L., H. Hu, Z. Liu, et al. 2021. “The Role of Ca2+ in Maturation and Reprogramming of Bovine Oocytes: A System Study of Low‐Calcium Model.” Frontiers in Cell and Developmental Biology 9: 746237. https://doi.org/10.3389/fcell.2021.746237.
Nakai, M., M. Ozawa, N. Maedomari, et al. 2014. “Delay in Cleavage of Porcine Embryos After Intracytoplasmic Sperm Injection (ICSI) Shows Poorer Embryonic Development.” Journal of Reproduction and Development 60, no. 3: 256–259. https://doi.org/10.1262/jrd.2013‐100.
Nogués, L., C. Reglero, V. Rivas, et al. 2016. “G Protein–Coupled Receptor Kinase 2 (GRK2) Promotes Breast Tumorigenesis Through a HDAC6‐Pin1 Axis.” eBioMedicine 13: 132–145. https://doi.org/10.1016/j.ebiom.2016.09.030.
Park, M. R., M. K. Gupta, H. R. Lee, Z. C. Das, S. J. Uhm, and H. T. Lee. 2011. “Possible Involvement of Class III Phosphatidylinositol‐3‐Kinase in Meiotic Progression of Porcine Oocytes Beyond Germinal Vesicle Stage.” Theriogenology 75, no. 5: 940–950. https://doi.org/10.1016/j.theriogenology.2010.11.002.
Pathania, A. S., X. Ren, M. Y. Mahdi, G. M. Shackleford, and A. Erdreich‐Epstein. 2019. “GRK2 Promotes Growth of Medulloblastoma Cells and Protects Them From Chemotherapy‐Induced Apoptosis.” Scientific Reports 9, no. 1: 13902. https://doi.org/10.1038/s41598‐019‐50157‐5.
Samiec, M., M. Skrzyszowska, and J. Opiela. 2013. “Creation of Cloned Pig Embryos Using Contact‐Inhibited or Serum‐Starved Fibroblast Cells Analysed Intravitam for Apoptosis Occurrence/Uzyskiwanie Klonalnych Zarodków Świni z Wykorzystaniem Komórek Fibroblastycznych Poddanych Inhibicji Kontaktowej lub Deprywacji Troficznej Oraz Analizowanych Przyżyciowo w Kierunku Apoptozy.” Annals of Animal Science 13, no. 2: 275–293. https://doi.org/10.2478/aoas‐2013‐0009.
ShiYang, X., Y. Miao, Z. Cui, et al. 2020. “Casein Kinase 2 Modulates the Spindle Assembly Checkpoint to Orchestrate Porcine Oocyte Meiotic Progression.” Journal of Animal Science and Biotechnology 11, no. 1: 31. https://doi.org/10.1186/s40104‐020‐00438‐1.
Sorriento, D., M. Ciccarelli, E. Cipolletta, B. Trimarco, and G. Iaccarino. 2016. “Freeze, Don't Move: How to Arrest a Suspect in Heart Failure—A Review on Available GRK2 Inhibitors.” Frontiers in Cardiovascular Medicine 3: 48. https://doi.org/10.3389/fcvm.2016.00048.
Sun, M. H., W. J. Jiang, X. H. Li, et al. 2023. “ATF6 Aggravates Apoptosis in Early Porcine Embryonic Development by Regulating Organelle Homeostasis Under High‐Temperature Conditions.” Zoological Research 44, no. 5: 848–859. https://doi.org/10.24272/j.issn.2095‐8137.2023.080.
Wakai, T., A. Mehregan, and R. A. Fissore. 2019. “Ca(2+) Signaling and Homeostasis in Mammalian Oocytes and Eggs.” Cold Spring Harbor Perspectives in Biology 11, no. 12: a035162. https://doi.org/10.1101/cshperspect.a035162.
Wang, D., H. Sun, J. Zhang, et al. 2021. “FKBP25 Regulates Meiotic Apparatus During Mouse Oocyte Maturation.” Frontiers in Cell and Developmental Biology 9: 625805. https://doi.org/10.3389/fcell.2021.625805.
Wartalski, K., J. Wiater, P. Maciak, et al. 2024. “Anabolic Steroids Activate the NF‐κB Pathway in Porcine Ovarian Putative Stem Cells Independently of the ZIP‐9 Receptor.” International Journal of Molecular Sciences 25, no. 5: 2833.
Wei, Z., R. Hurtt, T. Gu, A. S. Bodzin, W. J. Koch, and C. Doria. 2013. “GRK2 Negatively Regulates IGF‐1R Signaling Pathway and Cyclins' Expression in HepG2 Cells.” Journal of Cellular Physiology 228, no. 9: 1897–1901. https://doi.org/10.1002/jcp.24353.
Woodall, M. C., M. Ciccarelli, B. P. Woodall, and W. J. Koch. 2014. “G Protein–Coupled Receptor Kinase 2: A Link Between Myocardial Contractile Function and Cardiac Metabolism.” Circulation Research 114, no. 10: 1661–1670. https://doi.org/10.1161/circresaha.114.300513.
Wright, M. F., E. Bowdridge, E. L. McDermott, et al. 2014. “Mechanisms of Intracellular Calcium Homeostasis in Developing and Mature Bovine Corpora Lutea.” Biology of Reproduction 90, no. 3: 55. https://doi.org/10.1095/biolreprod.113.113662.
Xu, B.‐Z., M. Li, B. Xiong, et al. 2009. “Involvement of Calcium/Calmodulin‐Dependent Protein Kinase Kinase in Meiotic Maturation of Pig Oocytes.” Animal Reproduction Science 111, no. 1: 17–30. https://doi.org/10.1016/j.anireprosci.2008.02.010.
Xu, H., and H. Van Remmen. 2021. “The SarcoEndoplasmic Reticulum Calcium ATPase (SERCA) Pump: A Potential Target for Intervention in Aging and Skeletal Muscle Pathologies.” Skeletal Muscle 11, no. 1: 25. https://doi.org/10.1186/s13395‐021‐00280‐7.
Xu, Y. R., and W. X. Yang. 2017. “Calcium Influx and Sperm‐Evoked Calcium Responses During Oocyte Maturation and Egg Activation.” Oncotarget 8, no. 51: 89375–89390. https://doi.org/10.18632/oncotarget.19679.
Zhang, D. X., X. P. Li, S. C. Sun, X. H. Shen, X. S. Cui, and N. H. Kim. 2010. “Involvement of ER‐Calreticulin‐Ca2+ Signaling in the Regulation of Porcine Oocyte Meiotic Maturation and Maternal Gene Expression.” Molecular Reproduction and Development 77, no. 5: 462–471. https://doi.org/10.1002/mrd.21166.
Zhou, D., X.‐H. Li, S.‐H. Lee, et al. 2024. “GRK2 is Critical for the Cleavage of the Porcine Embryo by Regulating HSP90 and the AKT Pathway.” Reproduction 168, no. 4: e230463. https://doi.org/10.1530/REP‐23‐0463.
Zhou, D., Y. Niu, and X.‐S. Cui. 2020. “M‐RAS Regulate CDH1 Function in Blastomere Compaction During Porcine Embryonic Development.” Journal of Animal Reproduction and Biotechnology 35, no. 1: 12–20. https://doi.org/10.12750/JARB.35.1.12.
معلومات مُعتمدة: 2022R1A2C300769 National Research Foundation of Korea
فهرسة مساهمة: Keywords: Ca2+; GRK2; Gαq; MPF; meiotic maturation; oocyte maturation
المشرفين على المادة: EC 2.7.11.16 (G-Protein-Coupled Receptor Kinase 2)
SY7Q814VUP (Calcium)
EC 2.7.11.22 (Maturation-Promoting Factor)
تواريخ الأحداث: Date Created: 20240912 Date Completed: 20240912 Latest Revision: 20240912
رمز التحديث: 20240912
DOI: 10.1111/rda.14715
PMID: 39262106
قاعدة البيانات: MEDLINE
الوصف
تدمد:1439-0531
DOI:10.1111/rda.14715