دورية أكاديمية

Green synthesis of silver and gold-doped zinc oxide nanocomposite with propolis extract for enhanced anticancer activity.

التفاصيل البيبلوغرافية
العنوان: Green synthesis of silver and gold-doped zinc oxide nanocomposite with propolis extract for enhanced anticancer activity.
المؤلفون: Abdelsattar AS; Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt., Yakoup AY; Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt., Kamel AG; Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt., El-Shibiny A; Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt. aelshibiny@zewailcity.edu.eg.; Faculty of Environmental Agricultural Sciences, Arish University, Arish, 45511, Egypt. aelshibiny@zewailcity.edu.eg.
المصدر: Scientific reports [Sci Rep] 2024 Sep 18; Vol. 14 (1), pp. 21763. Date of Electronic Publication: 2024 Sep 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Propolis*/chemistry , Propolis*/pharmacology , Gold*/chemistry , Nanocomposites*/chemistry , Silver*/chemistry , Zinc Oxide*/chemistry , Zinc Oxide*/pharmacology , Antineoplastic Agents*/pharmacology , Antineoplastic Agents*/chemistry , Antineoplastic Agents*/chemical synthesis , Green Chemistry Technology*, Humans ; Hep G2 Cells ; MCF-7 Cells ; Metal Nanoparticles/chemistry ; Cell Survival/drug effects
مستخلص: Metal and metal oxide nanocomposites have unique properties and are promising for antibacterial and anticancer applications. In this work, we aimed to highlight the relationship between the biosynthesis ways of silver and gold-doped zinc oxide nanocomposites and their functions as anticancer on cell lines (MCF-7 and HepG2). The propolis was used to biosynthesize four different nanoparticles with the same components, including zinc, gold and silver. The nanocomposites were characterized using various techniques, including ultraviolet-visible spectroscopy (UV-Vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy Dispersive X-ray analysis (EDX) and cytotoxicity assays. The result of this study showed that formed nanocomposites have a similar level of Zn, Au, and Ag, ranging from 23-34%, 2-6%, and 2-3%, respectively. In addition, adding the components simultaneously produces the fastest color change, and the fabricated nanoparticles have spherical shapes with different layers. In addition, the prepared nanoparticles influenced the cell viability of the cancer cell lines, with the most effective one when Zn, Au, and Ag were added spontaneously to form a nanocomposite called (All) with IC 50 of 24.5 µg/mL for MCF7 cells and 29.1 µg/mL for HepG2 cells. Thus, the study illustrates that the preparation of nanocomposite generated through green synthesis with different methods significantly affects the structure and function and may improve the synthesis of nanocomposite to be developed into an efficacious therapeutic agent for cancers. In addition, this study opens the door toward a novel track in the field of nanocomposites as it links the synthesis with structure and function. Further anti-cancer properties, as well as animal testing are needed for those nanocomposites.
(© 2024. The Author(s).)
References: Duhan, J. S. et al. Nanotechnology: The new perspective in precision agriculture. Biotechnology Reports 15, 11–23 (2017). (PMID: 28603692545408610.1016/j.btre.2017.03.002)
Kamran, U., Bhatti, H. N., Iqbal, M. & Nazir, A. Green synthesis of metal nanoparticles and their applications in different fields: a review. Zeitschrift für Physikalische Chemie 233, 1325–1349 (2019). (PMID: 10.1515/zpch-2018-1238)
Prasad, R. D. et al. A review on concept of nanotechnology in veterinary medicine. ES Food Agrofor. 4, 28–60 (2021).
Shinde, M. U. et al. Nanomaterials: A potential hope for life sciences from bench to bedside. J. Nanomater. 2022, 1–13 (2022). (PMID: 10.1155/2022/5968131)
Liao W-M, Lai W-T, Li P-W, Kuo M-T, Chen PS, Tsai M-J. 2005. Strong quantum confinement and coulomb blockade effects in Ge quantum dots/SiO/sub 2/system, p. 549–552. In 5th IEEE Conference on Nanotechnology, 2005. IEEE.
Bahrulolum, H. et al. Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J. Nanobiotechnol. 19, 1–26 (2021). (PMID: 10.1186/s12951-021-00834-3)
Rönkkö, T. & Timonen, H. Overview of sources and characteristics of nanoparticles in urban traffic-influenced areas. J. Alzheimer’s Dis. 72, 15–28 (2019). (PMID: 10.3233/JAD-190170)
Luyts, K., Napierska, D., Nemery, B. & Hoet, P. H. M. How physico-chemical characteristics of nanoparticles cause their toxicity: Complex and unresolved interrelations. Environ. Sci. Process. Impacts 15, 23–38 (2013). (PMID: 2459242510.1039/C2EM30237C)
Khan, S. et al. A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms. J. Mol. Liquids 348, 118008 (2022). (PMID: 10.1016/j.molliq.2021.118008)
Nosheen, S. et al. A review: Development of magnetic nano vectors for biomedical applications. GSC Adv. Res. Rev. 8, 85–110 (2021). (PMID: 10.30574/gscarr.2021.8.2.0169)
Lee, H.-Y. et al. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)–conjugated radiolabeled iron oxide nanoparticles. J. Nucl. Med. 49, 1371–1379 (2008). (PMID: 1863281510.2967/jnumed.108.051243)
Abdelsattar, A. S., Yakoup, A. Y., Safwat, A. & El-Shibiny, A. The synergistic effect of using bacteriophages and chitosan nanoparticles against pathogenic bacteria as a novel therapeutic approach. Int. J. Biol. Macromol. 228, 374–384 (2023). (PMID: 3658102810.1016/j.ijbiomac.2022.12.246)
Krishnamurthy, S., Veerasamy, M. & Karruppaya, G. A review on plant sources for nano biopesticide production. Lett. Appl. NanoBioSci 9, 1348–1358 (2020). (PMID: 10.33263/LIANBS93.13481358)
Kumar, H., Venkatesh, N., Bhowmik, H. & Kuila, A. Metallic nanoparticle: a review. Biomed. J. Sci. Tech. Res. 4, 3765–3775 (2018).
Chouke, P. B. et al. Bioinspired metal/metal oxide nanoparticles: A road map to potential applications. Mater. Today Adv. 16, 100314 (2022). (PMID: 10.1016/j.mtadv.2022.100314)
Radičić, R., Maletić, D., Blažeka, D., Car, J. & Krstulović, N. Synthesis of silver, gold, and platinum doped zinc oxide nanoparticles by pulsed laser ablation in water. Nanomaterials 12, 3484 (2022). (PMID: 36234610956554210.3390/nano12193484)
Agnihotri, R., Gaur, S. & Albin, S. Nanometals in dentistry: Applications and toxicological implications—A systematic review. Biol. Trace Elem. Res. 197, 70–88 (2020). (PMID: 3178206310.1007/s12011-019-01986-y)
Matussin, S., Harunsani, M. H., Tan, A. L. & Khan, M. M. Plant-extract-mediated SnO2 nanoparticles: synthesis and applications. ACS Sustain. Chem. Eng. 8, 3040–3054 (2020). (PMID: 10.1021/acssuschemeng.9b06398)
AlNadhari, S., Al-Enazi, N. M., Alshehrei, F. & Ameen, F. A review on biogenic synthesis of metal nanoparticles using marine algae and its applications. Environ. Res. 194, 110672 (2021). (PMID: 3337361110.1016/j.envres.2020.110672)
El-Sayed, I. H., Huang, X. & El-Sayed, M. A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129–135 (2006). (PMID: 1619804910.1016/j.canlet.2005.07.035)
Sanna, V., Pala, N. & Sechi, M. Targeted therapy using nanotechnology: focus on cancer. Int. J. Nanomed. 9, 467 (2014).
Kingsley, J. D., Ranjan, S., Dasgupta, N. & Saha, P. Nanotechnology for tissue engineering: need, techniques and applications. J. Pharm. Res. 7, 200–204 (2013).
Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 13, 2638–2650 (2011). (PMID: 10.1039/c1gc15386b)
Nagajyothi, P. C., Sreekanth, T. V. M., Lee, J. & Lee, K. D. Mycosynthesis: antibacterial, antioxidant and antiproliferative activities of silver nanoparticles synthesized from Inonotus obliquus (Chaga mushroom) extract. J. Photochem. Photobiol. B: Biol. 130, 299–304 (2014). (PMID: 10.1016/j.jphotobiol.2013.11.022)
Nagajyothi PC, Sreekanth TVM. 2015. Green synthesis of metallic and metal oxide nanoparticles and their antibacterial activities, p. 99–117. In Green processes for nanotechnology. Springer.
Czyżowska, A. & Barbasz, A. A review: Zinc oxide nanoparticles–friends or enemies?. Int. J. Environ. Health Res. 32, 885–901 (2022). (PMID: 3277273510.1080/09603123.2020.1805415)
Sturikova, H., Krystofova, O., Huska, D. & Adam, V. Zinc, zinc nanoparticles and plants. J. Hazard. Mater. 349, 101–110 (2018). (PMID: 2941474110.1016/j.jhazmat.2018.01.040)
Ettadili, F. E. et al. Recent advances in the nanoparticles synthesis using plant extract: Applications and future recommendations. J. Mol. Struct. 1248, 131538 (2022). (PMID: 10.1016/j.molstruc.2021.131538)
Roszczenko, P., Szewczyk, O. K., Czarnomysy, R., Bielawski, K. & Bielawska, A. Biosynthesized gold, silver, palladium, platinum, copper, and other transition metal nanoparticles. Pharmaceutics 14, 2286 (2022). (PMID: 36365105969238410.3390/pharmaceutics14112286)
Li, Y., Zhang, B.-P. & Zhao, J.-X. Enhanced photocatalytic performance of Au–Ag alloy modified ZnO nanocomposite films. J. Alloys Compounds 586, 663–668 (2014). (PMID: 10.1016/j.jallcom.2013.10.085)
Abdelsattar, A. S. et al. The promising antibacterial and anticancer activity of green synthesized zinc nanoparticles in combination with silver and gold nanoparticles. J. Inorg. Organomet. Polym. 33, 1868–1881 (2023). (PMID: 10.1007/s10904-023-02614-y)
Ijaz, I., Gilani, E., Nazir, A. & Bukhari, A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem. Lett. Rev. 13, 223–245 (2020). (PMID: 10.1080/17518253.2020.1802517)
Ahmad, W., Bhatt, S. C., Verma, M., Kumar, V. & Kim, H. A review on current trends in the green synthesis of nickel oxide nanoparticles, characterizations, and their applications. Environ. Nanotechnol. Monitor. Manag. 18, 100674 (2022).
Wei, T., Yu, Q. & Chen, H. Responsive and synergistic antibacterial coatings: Fighting against bacteria in a smart and effective way. Adv. Healthc. Mater. 8, 1801381 (2019). (PMID: 10.1002/adhm.201801381)
Huang, J. et al. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18, 105104 (2007). (PMID: 10.1088/0957-4484/18/10/105104)
Ishak, N. A. I. M., Kamarudin, S. K. & Timmiati, S. N. Green synthesis of metal and metal oxide nanoparticles via plant extracts: An overview. Mater. Res. Express 6, 112004 (2019). (PMID: 10.1088/2053-1591/ab4458)
Talib, A. et al. Biogenic copper nanoparticles as a nanoscale solution to address multiple drug resistance in bacteria. Pak. J. Zool. https://doi.org/10.17582/journal.pjz/20191115101110 (2021). (PMID: 10.17582/journal.pjz/20191115101110)
Baptista, P. V. et al. Nano-strategies to fight multidrug resistant bacteria—“A Battle of the Titans”. Front. Microbiol. 9, 1441 (2018). (PMID: 30013539603660510.3389/fmicb.2018.01441)
Ahmed, T. et al. Recent advances in nanoparticles associated ecological harms and their biodegradation: Global environmental safety from nano-invaders. J. Environ. Chem. Eng. 9, 106093 (2021). (PMID: 10.1016/j.jece.2021.106093)
Chokkareddy R, Redhi GG, Kanchi S, Ahmed S. 2018. Green synthesis of metal nanoparticles and its reaction mechanisms. Green metal nanoparticles 113–139.
Pal, G., Rai, P., Pandey, A. 2019. Green synthesis of nanoparticles: A greener approach for a cleaner future, p. 1–26. In Green synthesis, characterization and applications of nanoparticles. Elsevier.
Dhaka, A., Mali, S. C., Sharma, S. & Trivedi, R. A review on biological synthesis of Silver nanoparticles and their potential applications. Results Chem. 6, 101108 (2023). (PMID: 10.1016/j.rechem.2023.101108)
Singh, N. A. et al. Nanoparticles synthesis via microorganisms and their prospective applications in agriculture. Plant Nano Biol. 5, 100047 (2023). (PMID: 10.1016/j.plana.2023.100047)
Barsola, B. & Kumari, P. Green synthesis of nano-propolis and nanoparticles (Se and Ag) from ethanolic extract of propolis, their biochemical characterization: A review. Green Processing and Synthesis 11, 659–673 (2022). (PMID: 10.1515/gps-2022-0059)
Chelu, M. et al. Green synthesis of bioinspired chitosan-ZnO-based polysaccharide gums hydrogels with propolis extract as novel functional natural biomaterials. Int. J. Biol. Macromol. 211, 410–424 (2022). (PMID: 3556968510.1016/j.ijbiomac.2022.05.070)
Pasupaleti, V. R. Honey, propolis, and royal jelly: A comprehensive review of their biological actions and health benefits. Oxid. Med. Cell. Long. https://doi.org/10.1155/2017/1259510 (2017). (PMID: 10.1155/2017/1259510)
Cauich-Kumul, R., Campos, M.R.S. (2019) Bee propolis: Properties, chemical composition, applications, and potential health effects, p. 227–243. In Bioactive compounds. Elsevier.
Yaashikaa, P. R. et al. Recent advances in edible coatings and their application in food packaging. Food Res. Int. 173, 113366 (2023). (PMID: 3780370510.1016/j.foodres.2023.113366)
Salama, A. & El-Sakhawy, M. Polysaccharides/propolis composite as promising materials with biomedical and packaging applications: A review. Biomass Convers. Biorefinery 14(4), 4555–4565 (2022). (PMID: 10.1007/s13399-022-02814-5)
Barsola, B. & Kumari, P. Green synthesis of nano-propolis and nanoparticles (Se and Ag) from ethanolic extract of propolis, their biochemical characterization: A review. Green Process. Synth. 11, 659–673 (2022). (PMID: 10.1515/gps-2022-0059)
Botteon, C. E. A. et al. Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Sci. Rep. 11, 1–16 (2021). (PMID: 10.1038/s41598-021-81281-w)
Hajizadeh, Y. S., Harzandi, N., Babapour, E., Yazdanian, M. & Ranjbar, R. Green synthesize and characterization of copper nanoparticles using Iranian propolis extracts. Ad. Mater. Sci. Eng. 2022(1), 8100440 (2022).
Priyadarshini, J. F. et al. Green synthesis of silver nanoparticles from propolis. Res. J. Life Sci. Bioinform. Pharm. Chem. Sci. 4, 23–36 (2018).
Saadawi, S. S. et al. Green synthesis and characterization of Libyan propolis nanoparticles and its biological activity. South Asian Res. J. Pharm. Sci. 4, 28–35 (2022). (PMID: 10.36346/sarjps.2022.v04i02.002)
Salem, S. S. & Fouda, A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol. Trace Element Res. 199, 344–370 (2021). (PMID: 10.1007/s12011-020-02138-3)
Madkhali, O. A. A comprehensive review on potential applications of metallic nanoparticles as antifungal therapies to combat human fungal diseases. Saudi Pharm. J. 31(9), 101733 (2023). (PMID: 376496741046326110.1016/j.jsps.2023.101733)
Gawande, M. B. et al. Core–shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 44, 7540–7590 (2015). (PMID: 2628819710.1039/C5CS00343A)
Ulbrich, K. et al. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 116, 5338–5431 (2016). (PMID: 2710970110.1021/acs.chemrev.5b00589)
Rossi, M. et al. Nanotechnology for food packaging and food quality assessment. Adv. Food Nutrit. Res. 82, 149–204 (2017). (PMID: 10.1016/bs.afnr.2017.01.002)
Ahmed, J. et al. Active chicken meat packaging based on polylactide films and bimetallic Ag–Cu nanoparticles and essential oil. J. Food Sci. 83, 1299–1310 (2018). (PMID: 2966077310.1111/1750-3841.14121)
Dos Santos, C. A., Ingle, A. P. & Rai, M. The emerging role of metallic nanoparticles in food. Appl. Microbiol. Biotechnol. 104, 2373–2383 (2020). (PMID: 3198922510.1007/s00253-020-10372-x)
Oun, A. A. & Rhim, J.-W. Preparation of multifunctional chitin nanowhiskers/ZnO-Ag NPs and their effect on the properties of carboxymethyl cellulose-based nanocomposite film. Carbohyd. Polym. 169, 467–479 (2017). (PMID: 10.1016/j.carbpol.2017.04.042)
Saidin, S., Jumat, M. A., Amin, N. A. A. M. & Al-Hammadi, A. S. S. Organic and inorganic antibacterial approaches in combating bacterial infection for biomedical application. Mater. Sci. Eng. C 118, 111382 (2021). (PMID: 10.1016/j.msec.2020.111382)
Sharma, M. et al. Inhibition of the bacterial growth as a consequence of synergism of Ag and ZnO: Calendula officinalis mediated green approach for nanoparticles and impact of altitude. Inorg. Chem. Commun. 136, 109131 (2022). (PMID: 10.1016/j.inoche.2021.109131)
Thapa, R. K. et al. Silver nanoparticle-embedded graphene oxide-methotrexate for targeted cancer treatment. Coll. Sur. B Biointerfaces 153, 95–103 (2017). (PMID: 10.1016/j.colsurfb.2017.02.012)
Brown, A. N. et al. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl. Environ. Microbiol. 78, 2768–2774 (2012). (PMID: 22286985331883410.1128/AEM.06513-11)
Chandrakala, V., Aruna, V. & Angajala, G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emerg. Mater. 5, 1593–1615 (2022). (PMID: 10.1007/s42247-021-00335-x)
Salama, S. A. et al. Nano propolis, zinc oxide nanoparticles, and their composites: A novel green synthesis with synergistic antioxidant and anticancer properties. J Compos Sci 7, 480 (2023). (PMID: 10.3390/jcs7110480)
Rezk, N. et al. New formula of the green synthesised Au@Ag core@shell nanoparticles using propolis extract presented high antibacterial and anticancer activity. AMB Expr 12, 108 (2022). (PMID: 10.1186/s13568-022-01450-6)
Pordanjani, A. H. et al. Nanofluids: Physical phenomena, applications in thermal systems and the environment effects-a critical review. J. Clean. Prod. 320, 128573 (2021). (PMID: 10.1016/j.jclepro.2021.128573)
Javed, R. et al. Diverse biotechnological applications of multifunctional titanium dioxide nanoparticles: An up-to-date review. IET Nanobiotechnol. 16, 171–189 (2022). (PMID: 35411585917865510.1049/nbt2.12085)
Balkir, P., Kemahlioglu, K. & Yucel, U. Foodomics: A new approach in food quality and safety. Trends Food Sci. Technol. 108, 49–57 (2021). (PMID: 10.1016/j.tifs.2020.11.028)
Viorica, R. et al. Consideration of a new approach to clarify the mechanism formation of AgNPs, AgNCl and AgNPs@ AgNCl synthesized by biological method. Discov. Nano 18, 2 (2023). (PMID: 36723754989238110.1186/s11671-023-03777-w)
Pandiyan, N. et al. Ionic liquid - A greener templating agent with Justicia adhatoda plant extract assisted green synthesis of morphologically improved Ag-Au/ZnO nanostructure and it’s antibacterial and anticancer activities. J. Photochem. Photobiol. B Biol. 198, 111559 (2019). (PMID: 10.1016/j.jphotobiol.2019.111559)
Abdelsattar, A. S., Eid, A., Rezk, N., Hussein, A. H. & El-Shibiny, A. Biosynthesis of gold nanoparticles using ethanolic propolis extract for methylene blue and Rhodamine-B removal. Materials Letters 327, 133060 (2022). (PMID: 10.1016/j.matlet.2022.133060)
Wahab, R. et al. ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Coll. Surf. B Biointerfaces 117, 267–276 (2014). (PMID: 10.1016/j.colsurfb.2014.02.038)
Van Meerloo, J., Kaspers, G. J. L. & Cloos, J. Cell Sensitivity Assays: The MTT Assay. In Cancer Cell Culture (ed. Cree, I. A.) 237–245 (Humana Press, 2011). (PMID: 10.1007/978-1-61779-080-5_20)
Hu, M. et al. Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35, 1084 (2006). (PMID: 1705783710.1039/b517615h)
Kreuter, J. Liposomes and nanoparticles as vehicles for antibiotics. Infection 19, S224–S228 (1991). (PMID: 187995710.1007/BF01644038)
Chen, C. Y., Yan, Z. & Goodman, D. W. On the origin of the unique properties of supported au nanoparticles. J. Am. Chem. Soc. 128, 6341–6346 (2006). (PMID: 1668379810.1021/ja0557536)
Huang, X., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem. Photobiol. 82, 412–417 (2006). (PMID: 1661349310.1562/2005-12-14-RA-754)
Cuenca, A. G. et al. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 107, 459–466 (2006). (PMID: 1679506510.1002/cncr.22035)
Waychunas, G. A. & Zhang, H. Structure, chemistry, and properties of mineral nanoparticles. Elements 4, 381–387 (2008). (PMID: 10.2113/gselements.4.6.381)
Talebian, N., Amininezhad, S. M. & Doudi, M. Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol. B Biology 120, 66–73 (2013). (PMID: 2342888810.1016/j.jphotobiol.2013.01.004)
Stanković, A., Dimitrijević, S. & Uskoković, D. Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents. Coll. Surf. B Biointerfaces 102, 21–28 (2013). (PMID: 10.1016/j.colsurfb.2012.07.033)
Yang, X. et al. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ. Sci. Technol. 46, 1119–1127 (2012). (PMID: 2214823810.1021/es202417t)
Kvítek, L. et al. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J. Phys. Chem. C 112, 5825–5834 (2008). (PMID: 10.1021/jp711616v)
Botteon, C. E. A. et al. Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Sci. Rep. 11, 1974 (2021). (PMID: 33479338782060210.1038/s41598-021-81281-w)
Andleeb, A. et al. A systematic review of biosynthesized metallic nanoparticles as a promising anti-cancer-strategy. Cancers 13, 2818 (2021). (PMID: 34198769820105710.3390/cancers13112818)
Rajeshkumar, S. Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J. Genet. Eng. Biotechnol. 14, 195–202 (2016). (PMID: 30647615629989610.1016/j.jgeb.2016.05.007)
Khandanlou, R., Murthy, V., Saranath, D. & Damani, H. Synthesis and characterization of gold-conjugated Backhousia citriodora nanoparticles and their anticancer activity against MCF-7 breast and HepG2 liver cancer cell lines. J. Mater. Sci. 53, 3106–3118 (2018). (PMID: 10.1007/s10853-017-1756-4)
Sarala, E., Madhukara Naik, M., Vinuth, M., Rami Reddy, Y. V. & Sujatha, H. R. Green synthesis of Lawsonia inermis-mediated zinc ferrite nanoparticles for magnetic studies and anticancer activity against breast cancer (MCF-7) cell lines. J. Mater. Sci. Mater. Electron. 31, 8589–8596 (2020). (PMID: 10.1007/s10854-020-03394-8)
Nguyen, L. A. T. et al. Green synthesis of silver nanoparticles using Callisia fragrans leaf extract and its anticancer activity against MCF-7, HepG2, KB, LU-1, and MKN-7 cell lines. Green Process. Synth. 12, 20230024 (2023). (PMID: 10.1515/gps-2023-0024)
Kavaz, D., Abubakar, A. L., Rizaner, N. & Umar, H. Biosynthesized ZnO nanoparticles using Albizia lebbeck extract induced biochemical and morphological alterations in wistar rats. Molecules 26, 3864 (2021). (PMID: 34202852827035110.3390/molecules26133864)
Govindasamy, G. A., Mydin, R. B., Effendy, W. N. F. W. E. & Sreekantan, S. Novel dual-ionic ZnO/CuO embedded in porous chitosan biopolymer for wound dressing application: Physicochemical, bactericidal, cytocompatibility and wound healing profiles. Mater. Today Commun. 33, 104545 (2022). (PMID: 10.1016/j.mtcomm.2022.104545)
Abdelsattar, A. S., Kamel, A. G., Elbermawy, Y., Gamal, H. & El-Shibiny, A. The selective cytotoxicity effect of biosynthesized zinc oxide nanoparticles using honey. Mater. Lett. 367, 136657 (2024). (PMID: 10.1016/j.matlet.2024.136657)
معلومات مُعتمدة: 41909 Science and Technology Development Fund
فهرسة مساهمة: Keywords: Anticancer; Gold nanoparticle; Nanocomposite; Silver nanoparticle; Zinc oxide nanoparticle
المشرفين على المادة: 9009-62-5 (Propolis)
7440-57-5 (Gold)
3M4G523W1G (Silver)
SOI2LOH54Z (Zinc Oxide)
0 (Antineoplastic Agents)
تواريخ الأحداث: Date Created: 20240918 Date Completed: 20240918 Latest Revision: 20240921
رمز التحديث: 20240922
مُعرف محوري في PubMed: PMC11410827
DOI: 10.1038/s41598-024-71758-9
PMID: 39294193
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-024-71758-9