دورية أكاديمية

Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene.

التفاصيل البيبلوغرافية
العنوان: Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene.
المؤلفون: Bagge-Hansen, M., Lauderbach, L., Hodgin, R., Bastea, S., Fried, L., Jones, A., van Buuren, T., Hansen, D., Benterou, J., May, C., Graber, T., Jensen, B. J., Ilavsky, J., Willey, T. M.
المصدر: Journal of Applied Physics; 6/28/2015, Vol. 117 Issue 24, p245902-1-245902-7, 7p, 7 Graphs
مصطلحات موضوعية: CARBON, X-ray scattering, NANOSTRUCTURED materials, THERMAL stability, STOICHIOMETRY, CHEMICAL yield, NANOPARTICLES
مستخلص: The dynamics of carbon condensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. The power-law slope is about -3, which is consistent with a complex disordered, irregular, or folded sp2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Applied Physics is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:00218979
DOI:10.1063/1.4922866