دورية أكاديمية

LINKING SATELLITE REMOTE SENSING BASED ENVIRONMENTAL PREDICTORS TO DISEASE: AN APPLICATION TO THE SPATIOTEMPORAL MODELLING OF SCHISTOSOMIASIS IN GHANA.

التفاصيل البيبلوغرافية
العنوان: LINKING SATELLITE REMOTE SENSING BASED ENVIRONMENTAL PREDICTORS TO DISEASE: AN APPLICATION TO THE SPATIOTEMPORAL MODELLING OF SCHISTOSOMIASIS IN GHANA.
المؤلفون: Wrable, M., Liss, A., Kulinkina, A., Koch, M., Biritwum, N. K., Ofosu, A., Kosinski, K. C., Gute, D. M., Naumova, E. N.
المصدر: International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences; 2016, Vol. 41 Issue B8, p215-221, 7p
مصطلحات موضوعية: SCHISTOSOMIASIS, REMOTE-sensing images, PUBLIC health
مستخلص: 90% of the worldwide schistosomiasis burden falls on sub-Saharan Africa. Control efforts are often based on infrequent, small-scale health surveys, which are expensive and logistically difficult to conduct. Use of satellite imagery to predictively model infectious disease transmission has great potential for public health applications. Transmission of schistosomiasis requires specific environmental conditions to sustain freshwater snails, however has unknown seasonality, and is difficult to study due to a long lag between infection and clinical symptoms. To overcome this, we employed a comprehensive 8-year time-series built from remote sensing feeds. The purely environmental predictor variables: accumulated precipitation, land surface temperature, vegetative growth indices, and climate zones created from a novel climate regionalization technique, were regressed against 8 years of national surveillance data in Ghana. All data were aggregated temporally into monthly observations, and spatially at the level of administrative districts. The result of an initial mixed effects model had 41% explained variance overall. Stratification by climate zone brought the R2 as high as 50% for major zones and as high as 59% for minor zones. This can lead to a predictive risk model used to develop a decision support framework to design treatment schemes and direct scarce resources to areas with the highest risk of infection. This framework can be applied to diseases sensitive to climate or to locations where remote sensing would be better suited than health surveys. [ABSTRACT FROM AUTHOR]
Copyright of International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences is the property of Copernicus Gesellschaft mbH and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:16821750
DOI:10.5194/isprsarchives-XLI-B8-215-2016