دورية أكاديمية

Vibrational properties of anhydrous and partially hydrated uranyl fluoride.

التفاصيل البيبلوغرافية
العنوان: Vibrational properties of anhydrous and partially hydrated uranyl fluoride.
المؤلفون: Kirkegaard, M. C., Langford, J., Steill, J., Anderson, B., Miskowiec, A.
المصدر: Journal of Chemical Physics; 2017, Vol. 146 Issue 2, p1-14, 14p, 1 Diagram, 5 Charts, 12 Graphs
مصطلحات موضوعية: HYDROGEN fluoride, DENSITY functional theory, CRYSTALS, RAMAN spectra, CHEMICAL decomposition
مستخلص: Uranyl fluoride (UO2F2) is a hygroscopic powder with two main structural phases: an anhydrous crystal and a partially hydrated crystal of the same R3¯m symmetry. The formally closed-shell electron structure of anhydrous UO2F2 is amenable to density functional theory calculations. We use density functional perturbation theory (DFPT) to calculate the vibrational frequencies of the anhydrous crystal structure and employ complementary inelastic neutron scattering and temperature-dependent Raman scattering to validate those frequencies. As a model closed-shell actinide, we investigated the effect of LDA, GGA, and non-local vdW functionals as well as the spherically averaged Hubbard +U correction on vibrational frequencies, electronic structure, and geometry of anhydrous UO2F2. A particular choice of Ueff=5.5 eV yields the correct U-Oyl bond distance and vibrational frequencies for the characteristic Eg and A1g modes that are within the resolution of experiment. Inelastic neutron scattering and Raman scattering suggest a degree of water coupling to the lattice vibrations in the more experimentally accessible partially hydrated UO2F2 system, with the symmetric stretching vibration shifted approximately 47 cm-1 lower in energy compared to the anhydrous structure. Evidence of water interaction with the uranyl ion is present from a two-peak decomposition of the uranyl stretching vibration in the Raman spectra and anion-hydrogen stretching vibrations in the inelastic neutron scattering spectra. A first-order dehydration phase transition temperature is definitively identified to be 125 °C using temperature-dependent Raman scattering. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Chemical Physics is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:00219606
DOI:10.1063/1.4973430