دورية أكاديمية

Diagnosing an Artificial Trend in NLDAS-2 Afternoon Precipitation.

التفاصيل البيبلوغرافية
العنوان: Diagnosing an Artificial Trend in NLDAS-2 Afternoon Precipitation.
المؤلفون: Ferguson, Craig R., Mocko, David M.
المصدر: Journal of Hydrometeorology; Apr2017, Vol. 18 Issue 4, p1051-1070, 20p
مصطلحات موضوعية: RAINFALL, METEOROLOGICAL precipitation, SURFACE energy, STREAMFLOW, RETROSPECTIVE studies
مستخلص: While investigating linkages between afternoon peak rainfall amount and land-atmosphere coupling strength, a statistically significant trend in phase 2 of the North American Land Data Assimilation System (NLDAS-2) warm season (April-September) afternoon (1700-2259 UTC) precipitation was noted for a large fraction of the conterminous United States, namely, two-thirds of the area east of the Mississippi River, during the period from 1979 to 2015. To verify and better characterize this trend, a thorough statistical analysis is undertaken. The analysis focuses on three aspects of precipitation: amount, frequency, and intensity at 6-hourly time scale and for each calendar month separately. At the NLDAS-2 native resolution of 0.125° × 0.125°, Kendall's tau and Sen's slope estimators are used to detect and estimate trends and the Pettitt test is used to detect breakpoints. Parallel analyses are conducted on both NARR and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), subdaily precipitation estimates. Widespread breakpoints of field significance at the α = 0.05 level are detected in the NLDAS-2 frequency and intensity series for all months and 6-h periods that are absent from the analogous NARR and MERRA-2 datasets. These breakpoints are shown to correspond with a July 1996 NLDAS-2 transition away from hourly 2° × 2.5° NOAA/CPC precipitation estimates to hourly 4-km stage II Doppler radar precipitation estimates in the temporal disaggregation of CPC daily gauge analyses. While NLDAS-2 may provide the most realistic diurnal precipitation cycle overall, users should be aware of this discontinuity and its direct effect on long-term trends in subdaily precipitation and indirect effects on trends in modeled soil moisture, surface temperature, surface energy and water fluxes, snow cover, snow water equivalent, and runoff/streamflow. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Hydrometeorology is the property of American Meteorological Society and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:1525755X
DOI:10.1175/JHM-D-16-0251.1